Artificial Neural Network (ANN) Based Fast and Accurate Inductor Modeling and Design

This paper analyzes the potential of Artificial Neural Networks (ANNs) for the modeling and optimization of magnetic components and, specifically, inductors. After reviewing the basic properties of ANNs, several potential modeling and design workflows are presented. A hybrid method, which combines t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of power electronics 2020, Vol.1, p.284-299
Hauptverfasser: Guillod, Thomas, Papamanolis, Panteleimon, W. Kolar, Johann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue
container_start_page 284
container_title IEEE open journal of power electronics
container_volume 1
creator Guillod, Thomas
Papamanolis, Panteleimon
W. Kolar, Johann
description This paper analyzes the potential of Artificial Neural Networks (ANNs) for the modeling and optimization of magnetic components and, specifically, inductors. After reviewing the basic properties of ANNs, several potential modeling and design workflows are presented. A hybrid method, which combines the accuracy of 3D Finite Element Method (FEM) and the low computational cost of ANNs, is selected and implemented. All relevant effects are considered (3D magnetic and thermal field patterns, detailed core loss data, winding proximity losses, coupled loss-thermal model, etc.) and the implemented model is extremely versatile (30 input and 40 output variables). The proposed ANN-based model can compute 50^{\prime}000 designs per second with less than 3 \% deviation with respect to 3D FEM simulations. Finally, the inductor of a 2 kW DC-DC buck converter is optimized with the ANN-based workflow. From the Pareto fronts, a design is selected, measured, and successfully compared with the results obtained with the ANNs. The implementation (source code and data) of the proposed workflow is available under an open-source license.
doi_str_mv 10.1109/OJPEL.2020.3012777
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_OJPEL_2020_3012777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9152082</ieee_id><doaj_id>oai_doaj_org_article_fc89c916951a4063bd85aea1fc727c43</doaj_id><sourcerecordid>oai_doaj_org_article_fc89c916951a4063bd85aea1fc727c43</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-72cd85e43e4e5cdcf9bd486f7bd18c6cb36e07899dedca7ba4998732cde5f4993</originalsourceid><addsrcrecordid>eNpNUE1PwkAUbIwmEuUP6GWPegD3q93usSIoBsEDnjfbt69ksbZmW2L895ZCiKeZzHszL2-i6IbRMWNUP6xe36eLMaecjgVlXCl1Fg14IuWICSbP__HLaNg0W0opjxnrhEG0zkLrCw_elmSJu9BD-1OHT3KXLZf35NE26MjMNi2xlSMZQLfUIplXbgdtHchb7bD01aYfP2HjN9V1dFHYssHhEa-ij9l0PXkZLVbP80m2GIHkvB0pDi6NUQqUGIODQudOpkmhcsdSSCAXCVKVau3QgVW5lVqnSnQujIuOi6tofsh1td2a7-C_bPg1tfWmF-qwMbZ7D0o0BaQaNEt0zKykici7yxYtK0BxBVJ0WfyQBaFumoDFKY9Rs6_Z9DWbfc3mWHNnuj2YPCKeDJrFnKZc_AFj53hq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Artificial Neural Network (ANN) Based Fast and Accurate Inductor Modeling and Design</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Guillod, Thomas ; Papamanolis, Panteleimon ; W. Kolar, Johann</creator><creatorcontrib>Guillod, Thomas ; Papamanolis, Panteleimon ; W. Kolar, Johann</creatorcontrib><description><![CDATA[This paper analyzes the potential of Artificial Neural Networks (ANNs) for the modeling and optimization of magnetic components and, specifically, inductors. After reviewing the basic properties of ANNs, several potential modeling and design workflows are presented. A hybrid method, which combines the accuracy of 3D Finite Element Method (FEM) and the low computational cost of ANNs, is selected and implemented. All relevant effects are considered (3D magnetic and thermal field patterns, detailed core loss data, winding proximity losses, coupled loss-thermal model, etc.) and the implemented model is extremely versatile (<inline-formula><tex-math notation="LaTeX">30</tex-math></inline-formula> input and <inline-formula><tex-math notation="LaTeX">40</tex-math></inline-formula> output variables). The proposed ANN-based model can compute <inline-formula><tex-math notation="LaTeX">50^{\prime}000</tex-math></inline-formula> designs per second with less than <inline-formula><tex-math notation="LaTeX">3 \%</tex-math></inline-formula> deviation with respect to 3D FEM simulations. Finally, the inductor of a <inline-formula><tex-math notation="LaTeX">2</tex-math></inline-formula> kW DC-DC buck converter is optimized with the ANN-based workflow. From the Pareto fronts, a design is selected, measured, and successfully compared with the results obtained with the ANNs. The implementation (source code and data) of the proposed workflow is available under an open-source license.]]></description><identifier>ISSN: 2644-1314</identifier><identifier>EISSN: 2644-1314</identifier><identifier>DOI: 10.1109/OJPEL.2020.3012777</identifier><identifier>CODEN: IOJPA6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computational modeling ; finite element analysis ; Inductors ; machine learning ; magnetic devices ; Neurons ; open source software ; Optimization ; pareto optimization ; Power converters ; Solid modeling ; Training</subject><ispartof>IEEE open journal of power electronics, 2020, Vol.1, p.284-299</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-72cd85e43e4e5cdcf9bd486f7bd18c6cb36e07899dedca7ba4998732cde5f4993</citedby><cites>FETCH-LOGICAL-c422t-72cd85e43e4e5cdcf9bd486f7bd18c6cb36e07899dedca7ba4998732cde5f4993</cites><orcidid>0000-0002-3732-2332 ; 0000-0002-6000-7402 ; 0000-0003-0738-5823</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9152082$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Guillod, Thomas</creatorcontrib><creatorcontrib>Papamanolis, Panteleimon</creatorcontrib><creatorcontrib>W. Kolar, Johann</creatorcontrib><title>Artificial Neural Network (ANN) Based Fast and Accurate Inductor Modeling and Design</title><title>IEEE open journal of power electronics</title><addtitle>OJPEL</addtitle><description><![CDATA[This paper analyzes the potential of Artificial Neural Networks (ANNs) for the modeling and optimization of magnetic components and, specifically, inductors. After reviewing the basic properties of ANNs, several potential modeling and design workflows are presented. A hybrid method, which combines the accuracy of 3D Finite Element Method (FEM) and the low computational cost of ANNs, is selected and implemented. All relevant effects are considered (3D magnetic and thermal field patterns, detailed core loss data, winding proximity losses, coupled loss-thermal model, etc.) and the implemented model is extremely versatile (<inline-formula><tex-math notation="LaTeX">30</tex-math></inline-formula> input and <inline-formula><tex-math notation="LaTeX">40</tex-math></inline-formula> output variables). The proposed ANN-based model can compute <inline-formula><tex-math notation="LaTeX">50^{\prime}000</tex-math></inline-formula> designs per second with less than <inline-formula><tex-math notation="LaTeX">3 \%</tex-math></inline-formula> deviation with respect to 3D FEM simulations. Finally, the inductor of a <inline-formula><tex-math notation="LaTeX">2</tex-math></inline-formula> kW DC-DC buck converter is optimized with the ANN-based workflow. From the Pareto fronts, a design is selected, measured, and successfully compared with the results obtained with the ANNs. The implementation (source code and data) of the proposed workflow is available under an open-source license.]]></description><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>finite element analysis</subject><subject>Inductors</subject><subject>machine learning</subject><subject>magnetic devices</subject><subject>Neurons</subject><subject>open source software</subject><subject>Optimization</subject><subject>pareto optimization</subject><subject>Power converters</subject><subject>Solid modeling</subject><subject>Training</subject><issn>2644-1314</issn><issn>2644-1314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PwkAUbIwmEuUP6GWPegD3q93usSIoBsEDnjfbt69ksbZmW2L895ZCiKeZzHszL2-i6IbRMWNUP6xe36eLMaecjgVlXCl1Fg14IuWICSbP__HLaNg0W0opjxnrhEG0zkLrCw_elmSJu9BD-1OHT3KXLZf35NE26MjMNi2xlSMZQLfUIplXbgdtHchb7bD01aYfP2HjN9V1dFHYssHhEa-ij9l0PXkZLVbP80m2GIHkvB0pDi6NUQqUGIODQudOpkmhcsdSSCAXCVKVau3QgVW5lVqnSnQujIuOi6tofsh1td2a7-C_bPg1tfWmF-qwMbZ7D0o0BaQaNEt0zKykici7yxYtK0BxBVJ0WfyQBaFumoDFKY9Rs6_Z9DWbfc3mWHNnuj2YPCKeDJrFnKZc_AFj53hq</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Guillod, Thomas</creator><creator>Papamanolis, Panteleimon</creator><creator>W. Kolar, Johann</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3732-2332</orcidid><orcidid>https://orcid.org/0000-0002-6000-7402</orcidid><orcidid>https://orcid.org/0000-0003-0738-5823</orcidid></search><sort><creationdate>2020</creationdate><title>Artificial Neural Network (ANN) Based Fast and Accurate Inductor Modeling and Design</title><author>Guillod, Thomas ; Papamanolis, Panteleimon ; W. Kolar, Johann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-72cd85e43e4e5cdcf9bd486f7bd18c6cb36e07899dedca7ba4998732cde5f4993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>finite element analysis</topic><topic>Inductors</topic><topic>machine learning</topic><topic>magnetic devices</topic><topic>Neurons</topic><topic>open source software</topic><topic>Optimization</topic><topic>pareto optimization</topic><topic>Power converters</topic><topic>Solid modeling</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guillod, Thomas</creatorcontrib><creatorcontrib>Papamanolis, Panteleimon</creatorcontrib><creatorcontrib>W. Kolar, Johann</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillod, Thomas</au><au>Papamanolis, Panteleimon</au><au>W. Kolar, Johann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network (ANN) Based Fast and Accurate Inductor Modeling and Design</atitle><jtitle>IEEE open journal of power electronics</jtitle><stitle>OJPEL</stitle><date>2020</date><risdate>2020</risdate><volume>1</volume><spage>284</spage><epage>299</epage><pages>284-299</pages><issn>2644-1314</issn><eissn>2644-1314</eissn><coden>IOJPA6</coden><abstract><![CDATA[This paper analyzes the potential of Artificial Neural Networks (ANNs) for the modeling and optimization of magnetic components and, specifically, inductors. After reviewing the basic properties of ANNs, several potential modeling and design workflows are presented. A hybrid method, which combines the accuracy of 3D Finite Element Method (FEM) and the low computational cost of ANNs, is selected and implemented. All relevant effects are considered (3D magnetic and thermal field patterns, detailed core loss data, winding proximity losses, coupled loss-thermal model, etc.) and the implemented model is extremely versatile (<inline-formula><tex-math notation="LaTeX">30</tex-math></inline-formula> input and <inline-formula><tex-math notation="LaTeX">40</tex-math></inline-formula> output variables). The proposed ANN-based model can compute <inline-formula><tex-math notation="LaTeX">50^{\prime}000</tex-math></inline-formula> designs per second with less than <inline-formula><tex-math notation="LaTeX">3 \%</tex-math></inline-formula> deviation with respect to 3D FEM simulations. Finally, the inductor of a <inline-formula><tex-math notation="LaTeX">2</tex-math></inline-formula> kW DC-DC buck converter is optimized with the ANN-based workflow. From the Pareto fronts, a design is selected, measured, and successfully compared with the results obtained with the ANNs. The implementation (source code and data) of the proposed workflow is available under an open-source license.]]></abstract><pub>IEEE</pub><doi>10.1109/OJPEL.2020.3012777</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3732-2332</orcidid><orcidid>https://orcid.org/0000-0002-6000-7402</orcidid><orcidid>https://orcid.org/0000-0003-0738-5823</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-1314
ispartof IEEE open journal of power electronics, 2020, Vol.1, p.284-299
issn 2644-1314
2644-1314
language eng
recordid cdi_crossref_primary_10_1109_OJPEL_2020_3012777
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Computational modeling
finite element analysis
Inductors
machine learning
magnetic devices
Neurons
open source software
Optimization
pareto optimization
Power converters
Solid modeling
Training
title Artificial Neural Network (ANN) Based Fast and Accurate Inductor Modeling and Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network%20(ANN)%20Based%20Fast%20and%20Accurate%20Inductor%20Modeling%20and%20Design&rft.jtitle=IEEE%20open%20journal%20of%20power%20electronics&rft.au=Guillod,%20Thomas&rft.date=2020&rft.volume=1&rft.spage=284&rft.epage=299&rft.pages=284-299&rft.issn=2644-1314&rft.eissn=2644-1314&rft.coden=IOJPA6&rft_id=info:doi/10.1109/OJPEL.2020.3012777&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_fc89c916951a4063bd85aea1fc727c43%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9152082&rft_doaj_id=oai_doaj_org_article_fc89c916951a4063bd85aea1fc727c43&rfr_iscdi=true