Random Access Optimization With Generative Adversarial Networks in Industrial IoT Using Deep Deterministic Policy Gradient Approach
To ensure extensive connectivity for a large number of Internet of Things (IoT) devices, there is a critical need for effective random access (RA). However, the substantial number of IoT users accessing the network leads to severe collisions, which cause delays in establishing successful RA connecti...
Gespeichert in:
Veröffentlicht in: | IEEE open journal of the Communications Society 2024-11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE open journal of the Communications Society |
container_volume | |
creator | Ahmad, Ishtiaq Narmeen, Ramsha Aftab, Muhammad Waleed Alkhrijah, Yazeed Alawad, Mohamad A. Kaushik, Aryan |
description | To ensure extensive connectivity for a large number of Internet of Things (IoT) devices, there is a critical need for effective random access (RA). However, the substantial number of IoT users accessing the network leads to severe collisions, which cause delays in establishing successful RA connections and ultimately degrade system performance. While recent research has focused on binary preamble detection and the management of random access channel (RACH) overload, it has not specifically addressed RA overload for massive IoT users. This paper proposes a joint solution for preamble collision detection and timing advance (TA) prediction, referred to as PC-TA, inspired by generative adversarial networks (GANs). We utilize an actor-critic-based deep deterministic policy gradient (AC-DDPG) framework as one of the neural networks within the GAN, specifically designed to tackle preamble collision detection and resolution for numerous IoT users. In addition, we implement a fully connected graph neural network (GNN) as the second neural network in the GAN to predict timing advance (TA), which improves the average packet success rate and reduces overall latency. Simulation results validate the effectiveness of the proposed PC-TA, showing an approximate 85% gain over state-of-the-art methods in the existing literature. Consequently, this approach significantly enhances the chances of rapid RA success, allowing each IoT device to achieve successful RA with fewer trials. |
doi_str_mv | 10.1109/OJCOMS.2024.3506782 |
format | Article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_OJCOMS_2024_3506782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10767602</ieee_id><sourcerecordid>10_1109_OJCOMS_2024_3506782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1102-4d37f9cdc47c10c622aec3192798588c8dd372caf6048f55869ede78a9f89ef33</originalsourceid><addsrcrecordid>eNpNkMlOwzAQQC0EEhX0C-DgH0jxksU5RgVKUSEIWsEtsuwJNTROZJuicuXHSWkPvcymeSPNQ-iCkhGlJL8q78flw8uIERaPeELSTLAjNGBpHEeUJW_HB_UpGnr_QQhhCaWUxwP0-yytbhtcKAXe47ILpjE_MpjW4lcTlngCFlzfrwEXeg3OS2fkCj9C-G7dp8fG4qnVXz78j6ftHC-8se_4GqDrQwDXGGt8MAo_tSujNnjipDZgAy66zrVSLc_RSS1XHob7fIYWtzfz8V00KyfTcTGLVP8ni2LNszpXWsWZokSljElQnOYsy0UihBK6X2BK1imJRZ0kIs1BQyZkXoscas7PEN_dVa713kFddc400m0qSqqtymqnstqqrPYqe-pyRxkAOCCyNEsJ43-1oHLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Random Access Optimization With Generative Adversarial Networks in Industrial IoT Using Deep Deterministic Policy Gradient Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ahmad, Ishtiaq ; Narmeen, Ramsha ; Aftab, Muhammad Waleed ; Alkhrijah, Yazeed ; Alawad, Mohamad A. ; Kaushik, Aryan</creator><creatorcontrib>Ahmad, Ishtiaq ; Narmeen, Ramsha ; Aftab, Muhammad Waleed ; Alkhrijah, Yazeed ; Alawad, Mohamad A. ; Kaushik, Aryan</creatorcontrib><description>To ensure extensive connectivity for a large number of Internet of Things (IoT) devices, there is a critical need for effective random access (RA). However, the substantial number of IoT users accessing the network leads to severe collisions, which cause delays in establishing successful RA connections and ultimately degrade system performance. While recent research has focused on binary preamble detection and the management of random access channel (RACH) overload, it has not specifically addressed RA overload for massive IoT users. This paper proposes a joint solution for preamble collision detection and timing advance (TA) prediction, referred to as PC-TA, inspired by generative adversarial networks (GANs). We utilize an actor-critic-based deep deterministic policy gradient (AC-DDPG) framework as one of the neural networks within the GAN, specifically designed to tackle preamble collision detection and resolution for numerous IoT users. In addition, we implement a fully connected graph neural network (GNN) as the second neural network in the GAN to predict timing advance (TA), which improves the average packet success rate and reduces overall latency. Simulation results validate the effectiveness of the proposed PC-TA, showing an approximate 85% gain over state-of-the-art methods in the existing literature. Consequently, this approach significantly enhances the chances of rapid RA success, allowing each IoT device to achieve successful RA with fewer trials.</description><identifier>ISSN: 2644-125X</identifier><identifier>EISSN: 2644-125X</identifier><identifier>DOI: 10.1109/OJCOMS.2024.3506782</identifier><identifier>CODEN: IOJCAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Collision avoidance ; Deep reinforcement learning ; Delays ; Electrical engineering ; Generative adversarial networks ; Industrial Internet of Things ; Internet of Things ; IoT ; Optimization ; preamble collision ; random access ; Reliability ; Resource management</subject><ispartof>IEEE open journal of the Communications Society, 2024-11, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2560-2724 ; 0000-0001-7352-003X ; 0000-0003-2661-7108 ; 0009-0003-1358-9766 ; 0000-0001-6252-4641 ; 0000-0001-6856-7466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10767602$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ahmad, Ishtiaq</creatorcontrib><creatorcontrib>Narmeen, Ramsha</creatorcontrib><creatorcontrib>Aftab, Muhammad Waleed</creatorcontrib><creatorcontrib>Alkhrijah, Yazeed</creatorcontrib><creatorcontrib>Alawad, Mohamad A.</creatorcontrib><creatorcontrib>Kaushik, Aryan</creatorcontrib><title>Random Access Optimization With Generative Adversarial Networks in Industrial IoT Using Deep Deterministic Policy Gradient Approach</title><title>IEEE open journal of the Communications Society</title><addtitle>OJCOMS</addtitle><description>To ensure extensive connectivity for a large number of Internet of Things (IoT) devices, there is a critical need for effective random access (RA). However, the substantial number of IoT users accessing the network leads to severe collisions, which cause delays in establishing successful RA connections and ultimately degrade system performance. While recent research has focused on binary preamble detection and the management of random access channel (RACH) overload, it has not specifically addressed RA overload for massive IoT users. This paper proposes a joint solution for preamble collision detection and timing advance (TA) prediction, referred to as PC-TA, inspired by generative adversarial networks (GANs). We utilize an actor-critic-based deep deterministic policy gradient (AC-DDPG) framework as one of the neural networks within the GAN, specifically designed to tackle preamble collision detection and resolution for numerous IoT users. In addition, we implement a fully connected graph neural network (GNN) as the second neural network in the GAN to predict timing advance (TA), which improves the average packet success rate and reduces overall latency. Simulation results validate the effectiveness of the proposed PC-TA, showing an approximate 85% gain over state-of-the-art methods in the existing literature. Consequently, this approach significantly enhances the chances of rapid RA success, allowing each IoT device to achieve successful RA with fewer trials.</description><subject>Accuracy</subject><subject>Collision avoidance</subject><subject>Deep reinforcement learning</subject><subject>Delays</subject><subject>Electrical engineering</subject><subject>Generative adversarial networks</subject><subject>Industrial Internet of Things</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>Optimization</subject><subject>preamble collision</subject><subject>random access</subject><subject>Reliability</subject><subject>Resource management</subject><issn>2644-125X</issn><issn>2644-125X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMlOwzAQQC0EEhX0C-DgH0jxksU5RgVKUSEIWsEtsuwJNTROZJuicuXHSWkPvcymeSPNQ-iCkhGlJL8q78flw8uIERaPeELSTLAjNGBpHEeUJW_HB_UpGnr_QQhhCaWUxwP0-yytbhtcKAXe47ILpjE_MpjW4lcTlngCFlzfrwEXeg3OS2fkCj9C-G7dp8fG4qnVXz78j6ftHC-8se_4GqDrQwDXGGt8MAo_tSujNnjipDZgAy66zrVSLc_RSS1XHob7fIYWtzfz8V00KyfTcTGLVP8ni2LNszpXWsWZokSljElQnOYsy0UihBK6X2BK1imJRZ0kIs1BQyZkXoscas7PEN_dVa713kFddc400m0qSqqtymqnstqqrPYqe-pyRxkAOCCyNEsJ43-1oHLk</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Ahmad, Ishtiaq</creator><creator>Narmeen, Ramsha</creator><creator>Aftab, Muhammad Waleed</creator><creator>Alkhrijah, Yazeed</creator><creator>Alawad, Mohamad A.</creator><creator>Kaushik, Aryan</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2560-2724</orcidid><orcidid>https://orcid.org/0000-0001-7352-003X</orcidid><orcidid>https://orcid.org/0000-0003-2661-7108</orcidid><orcidid>https://orcid.org/0009-0003-1358-9766</orcidid><orcidid>https://orcid.org/0000-0001-6252-4641</orcidid><orcidid>https://orcid.org/0000-0001-6856-7466</orcidid></search><sort><creationdate>20241125</creationdate><title>Random Access Optimization With Generative Adversarial Networks in Industrial IoT Using Deep Deterministic Policy Gradient Approach</title><author>Ahmad, Ishtiaq ; Narmeen, Ramsha ; Aftab, Muhammad Waleed ; Alkhrijah, Yazeed ; Alawad, Mohamad A. ; Kaushik, Aryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1102-4d37f9cdc47c10c622aec3192798588c8dd372caf6048f55869ede78a9f89ef33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Collision avoidance</topic><topic>Deep reinforcement learning</topic><topic>Delays</topic><topic>Electrical engineering</topic><topic>Generative adversarial networks</topic><topic>Industrial Internet of Things</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>Optimization</topic><topic>preamble collision</topic><topic>random access</topic><topic>Reliability</topic><topic>Resource management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Ishtiaq</creatorcontrib><creatorcontrib>Narmeen, Ramsha</creatorcontrib><creatorcontrib>Aftab, Muhammad Waleed</creatorcontrib><creatorcontrib>Alkhrijah, Yazeed</creatorcontrib><creatorcontrib>Alawad, Mohamad A.</creatorcontrib><creatorcontrib>Kaushik, Aryan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE open journal of the Communications Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Ishtiaq</au><au>Narmeen, Ramsha</au><au>Aftab, Muhammad Waleed</au><au>Alkhrijah, Yazeed</au><au>Alawad, Mohamad A.</au><au>Kaushik, Aryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Access Optimization With Generative Adversarial Networks in Industrial IoT Using Deep Deterministic Policy Gradient Approach</atitle><jtitle>IEEE open journal of the Communications Society</jtitle><stitle>OJCOMS</stitle><date>2024-11-25</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2644-125X</issn><eissn>2644-125X</eissn><coden>IOJCAZ</coden><abstract>To ensure extensive connectivity for a large number of Internet of Things (IoT) devices, there is a critical need for effective random access (RA). However, the substantial number of IoT users accessing the network leads to severe collisions, which cause delays in establishing successful RA connections and ultimately degrade system performance. While recent research has focused on binary preamble detection and the management of random access channel (RACH) overload, it has not specifically addressed RA overload for massive IoT users. This paper proposes a joint solution for preamble collision detection and timing advance (TA) prediction, referred to as PC-TA, inspired by generative adversarial networks (GANs). We utilize an actor-critic-based deep deterministic policy gradient (AC-DDPG) framework as one of the neural networks within the GAN, specifically designed to tackle preamble collision detection and resolution for numerous IoT users. In addition, we implement a fully connected graph neural network (GNN) as the second neural network in the GAN to predict timing advance (TA), which improves the average packet success rate and reduces overall latency. Simulation results validate the effectiveness of the proposed PC-TA, showing an approximate 85% gain over state-of-the-art methods in the existing literature. Consequently, this approach significantly enhances the chances of rapid RA success, allowing each IoT device to achieve successful RA with fewer trials.</abstract><pub>IEEE</pub><doi>10.1109/OJCOMS.2024.3506782</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2560-2724</orcidid><orcidid>https://orcid.org/0000-0001-7352-003X</orcidid><orcidid>https://orcid.org/0000-0003-2661-7108</orcidid><orcidid>https://orcid.org/0009-0003-1358-9766</orcidid><orcidid>https://orcid.org/0000-0001-6252-4641</orcidid><orcidid>https://orcid.org/0000-0001-6856-7466</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2644-125X |
ispartof | IEEE open journal of the Communications Society, 2024-11, p.1-1 |
issn | 2644-125X 2644-125X |
language | eng |
recordid | cdi_crossref_primary_10_1109_OJCOMS_2024_3506782 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Collision avoidance Deep reinforcement learning Delays Electrical engineering Generative adversarial networks Industrial Internet of Things Internet of Things IoT Optimization preamble collision random access Reliability Resource management |
title | Random Access Optimization With Generative Adversarial Networks in Industrial IoT Using Deep Deterministic Policy Gradient Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Access%20Optimization%20With%20Generative%20Adversarial%20Networks%20in%20Industrial%20IoT%20Using%20Deep%20Deterministic%20Policy%20Gradient%20Approach&rft.jtitle=IEEE%20open%20journal%20of%20the%20Communications%20Society&rft.au=Ahmad,%20Ishtiaq&rft.date=2024-11-25&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2644-125X&rft.eissn=2644-125X&rft.coden=IOJCAZ&rft_id=info:doi/10.1109/OJCOMS.2024.3506782&rft_dat=%3Ccrossref_ieee_%3E10_1109_OJCOMS_2024_3506782%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10767602&rfr_iscdi=true |