Random Access Optimization With Generative Adversarial Networks in Industrial IoT Using Deep Deterministic Policy Gradient Approach

To ensure extensive connectivity for a large number of Internet of Things (IoT) devices, there is a critical need for effective random access (RA). However, the substantial number of IoT users accessing the network leads to severe collisions, which cause delays in establishing successful RA connecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of the Communications Society 2024-11, p.1-1
Hauptverfasser: Ahmad, Ishtiaq, Narmeen, Ramsha, Aftab, Muhammad Waleed, Alkhrijah, Yazeed, Alawad, Mohamad A., Kaushik, Aryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE open journal of the Communications Society
container_volume
creator Ahmad, Ishtiaq
Narmeen, Ramsha
Aftab, Muhammad Waleed
Alkhrijah, Yazeed
Alawad, Mohamad A.
Kaushik, Aryan
description To ensure extensive connectivity for a large number of Internet of Things (IoT) devices, there is a critical need for effective random access (RA). However, the substantial number of IoT users accessing the network leads to severe collisions, which cause delays in establishing successful RA connections and ultimately degrade system performance. While recent research has focused on binary preamble detection and the management of random access channel (RACH) overload, it has not specifically addressed RA overload for massive IoT users. This paper proposes a joint solution for preamble collision detection and timing advance (TA) prediction, referred to as PC-TA, inspired by generative adversarial networks (GANs). We utilize an actor-critic-based deep deterministic policy gradient (AC-DDPG) framework as one of the neural networks within the GAN, specifically designed to tackle preamble collision detection and resolution for numerous IoT users. In addition, we implement a fully connected graph neural network (GNN) as the second neural network in the GAN to predict timing advance (TA), which improves the average packet success rate and reduces overall latency. Simulation results validate the effectiveness of the proposed PC-TA, showing an approximate 85% gain over state-of-the-art methods in the existing literature. Consequently, this approach significantly enhances the chances of rapid RA success, allowing each IoT device to achieve successful RA with fewer trials.
doi_str_mv 10.1109/OJCOMS.2024.3506782
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_OJCOMS_2024_3506782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10767602</ieee_id><sourcerecordid>10_1109_OJCOMS_2024_3506782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1102-4d37f9cdc47c10c622aec3192798588c8dd372caf6048f55869ede78a9f89ef33</originalsourceid><addsrcrecordid>eNpNkMlOwzAQQC0EEhX0C-DgH0jxksU5RgVKUSEIWsEtsuwJNTROZJuicuXHSWkPvcymeSPNQ-iCkhGlJL8q78flw8uIERaPeELSTLAjNGBpHEeUJW_HB_UpGnr_QQhhCaWUxwP0-yytbhtcKAXe47ILpjE_MpjW4lcTlngCFlzfrwEXeg3OS2fkCj9C-G7dp8fG4qnVXz78j6ftHC-8se_4GqDrQwDXGGt8MAo_tSujNnjipDZgAy66zrVSLc_RSS1XHob7fIYWtzfz8V00KyfTcTGLVP8ni2LNszpXWsWZokSljElQnOYsy0UihBK6X2BK1imJRZ0kIs1BQyZkXoscas7PEN_dVa713kFddc400m0qSqqtymqnstqqrPYqe-pyRxkAOCCyNEsJ43-1oHLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Random Access Optimization With Generative Adversarial Networks in Industrial IoT Using Deep Deterministic Policy Gradient Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ahmad, Ishtiaq ; Narmeen, Ramsha ; Aftab, Muhammad Waleed ; Alkhrijah, Yazeed ; Alawad, Mohamad A. ; Kaushik, Aryan</creator><creatorcontrib>Ahmad, Ishtiaq ; Narmeen, Ramsha ; Aftab, Muhammad Waleed ; Alkhrijah, Yazeed ; Alawad, Mohamad A. ; Kaushik, Aryan</creatorcontrib><description>To ensure extensive connectivity for a large number of Internet of Things (IoT) devices, there is a critical need for effective random access (RA). However, the substantial number of IoT users accessing the network leads to severe collisions, which cause delays in establishing successful RA connections and ultimately degrade system performance. While recent research has focused on binary preamble detection and the management of random access channel (RACH) overload, it has not specifically addressed RA overload for massive IoT users. This paper proposes a joint solution for preamble collision detection and timing advance (TA) prediction, referred to as PC-TA, inspired by generative adversarial networks (GANs). We utilize an actor-critic-based deep deterministic policy gradient (AC-DDPG) framework as one of the neural networks within the GAN, specifically designed to tackle preamble collision detection and resolution for numerous IoT users. In addition, we implement a fully connected graph neural network (GNN) as the second neural network in the GAN to predict timing advance (TA), which improves the average packet success rate and reduces overall latency. Simulation results validate the effectiveness of the proposed PC-TA, showing an approximate 85% gain over state-of-the-art methods in the existing literature. Consequently, this approach significantly enhances the chances of rapid RA success, allowing each IoT device to achieve successful RA with fewer trials.</description><identifier>ISSN: 2644-125X</identifier><identifier>EISSN: 2644-125X</identifier><identifier>DOI: 10.1109/OJCOMS.2024.3506782</identifier><identifier>CODEN: IOJCAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Collision avoidance ; Deep reinforcement learning ; Delays ; Electrical engineering ; Generative adversarial networks ; Industrial Internet of Things ; Internet of Things ; IoT ; Optimization ; preamble collision ; random access ; Reliability ; Resource management</subject><ispartof>IEEE open journal of the Communications Society, 2024-11, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2560-2724 ; 0000-0001-7352-003X ; 0000-0003-2661-7108 ; 0009-0003-1358-9766 ; 0000-0001-6252-4641 ; 0000-0001-6856-7466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10767602$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ahmad, Ishtiaq</creatorcontrib><creatorcontrib>Narmeen, Ramsha</creatorcontrib><creatorcontrib>Aftab, Muhammad Waleed</creatorcontrib><creatorcontrib>Alkhrijah, Yazeed</creatorcontrib><creatorcontrib>Alawad, Mohamad A.</creatorcontrib><creatorcontrib>Kaushik, Aryan</creatorcontrib><title>Random Access Optimization With Generative Adversarial Networks in Industrial IoT Using Deep Deterministic Policy Gradient Approach</title><title>IEEE open journal of the Communications Society</title><addtitle>OJCOMS</addtitle><description>To ensure extensive connectivity for a large number of Internet of Things (IoT) devices, there is a critical need for effective random access (RA). However, the substantial number of IoT users accessing the network leads to severe collisions, which cause delays in establishing successful RA connections and ultimately degrade system performance. While recent research has focused on binary preamble detection and the management of random access channel (RACH) overload, it has not specifically addressed RA overload for massive IoT users. This paper proposes a joint solution for preamble collision detection and timing advance (TA) prediction, referred to as PC-TA, inspired by generative adversarial networks (GANs). We utilize an actor-critic-based deep deterministic policy gradient (AC-DDPG) framework as one of the neural networks within the GAN, specifically designed to tackle preamble collision detection and resolution for numerous IoT users. In addition, we implement a fully connected graph neural network (GNN) as the second neural network in the GAN to predict timing advance (TA), which improves the average packet success rate and reduces overall latency. Simulation results validate the effectiveness of the proposed PC-TA, showing an approximate 85% gain over state-of-the-art methods in the existing literature. Consequently, this approach significantly enhances the chances of rapid RA success, allowing each IoT device to achieve successful RA with fewer trials.</description><subject>Accuracy</subject><subject>Collision avoidance</subject><subject>Deep reinforcement learning</subject><subject>Delays</subject><subject>Electrical engineering</subject><subject>Generative adversarial networks</subject><subject>Industrial Internet of Things</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>Optimization</subject><subject>preamble collision</subject><subject>random access</subject><subject>Reliability</subject><subject>Resource management</subject><issn>2644-125X</issn><issn>2644-125X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMlOwzAQQC0EEhX0C-DgH0jxksU5RgVKUSEIWsEtsuwJNTROZJuicuXHSWkPvcymeSPNQ-iCkhGlJL8q78flw8uIERaPeELSTLAjNGBpHEeUJW_HB_UpGnr_QQhhCaWUxwP0-yytbhtcKAXe47ILpjE_MpjW4lcTlngCFlzfrwEXeg3OS2fkCj9C-G7dp8fG4qnVXz78j6ftHC-8se_4GqDrQwDXGGt8MAo_tSujNnjipDZgAy66zrVSLc_RSS1XHob7fIYWtzfz8V00KyfTcTGLVP8ni2LNszpXWsWZokSljElQnOYsy0UihBK6X2BK1imJRZ0kIs1BQyZkXoscas7PEN_dVa713kFddc400m0qSqqtymqnstqqrPYqe-pyRxkAOCCyNEsJ43-1oHLk</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Ahmad, Ishtiaq</creator><creator>Narmeen, Ramsha</creator><creator>Aftab, Muhammad Waleed</creator><creator>Alkhrijah, Yazeed</creator><creator>Alawad, Mohamad A.</creator><creator>Kaushik, Aryan</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2560-2724</orcidid><orcidid>https://orcid.org/0000-0001-7352-003X</orcidid><orcidid>https://orcid.org/0000-0003-2661-7108</orcidid><orcidid>https://orcid.org/0009-0003-1358-9766</orcidid><orcidid>https://orcid.org/0000-0001-6252-4641</orcidid><orcidid>https://orcid.org/0000-0001-6856-7466</orcidid></search><sort><creationdate>20241125</creationdate><title>Random Access Optimization With Generative Adversarial Networks in Industrial IoT Using Deep Deterministic Policy Gradient Approach</title><author>Ahmad, Ishtiaq ; Narmeen, Ramsha ; Aftab, Muhammad Waleed ; Alkhrijah, Yazeed ; Alawad, Mohamad A. ; Kaushik, Aryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1102-4d37f9cdc47c10c622aec3192798588c8dd372caf6048f55869ede78a9f89ef33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Collision avoidance</topic><topic>Deep reinforcement learning</topic><topic>Delays</topic><topic>Electrical engineering</topic><topic>Generative adversarial networks</topic><topic>Industrial Internet of Things</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>Optimization</topic><topic>preamble collision</topic><topic>random access</topic><topic>Reliability</topic><topic>Resource management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Ishtiaq</creatorcontrib><creatorcontrib>Narmeen, Ramsha</creatorcontrib><creatorcontrib>Aftab, Muhammad Waleed</creatorcontrib><creatorcontrib>Alkhrijah, Yazeed</creatorcontrib><creatorcontrib>Alawad, Mohamad A.</creatorcontrib><creatorcontrib>Kaushik, Aryan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE open journal of the Communications Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Ishtiaq</au><au>Narmeen, Ramsha</au><au>Aftab, Muhammad Waleed</au><au>Alkhrijah, Yazeed</au><au>Alawad, Mohamad A.</au><au>Kaushik, Aryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Access Optimization With Generative Adversarial Networks in Industrial IoT Using Deep Deterministic Policy Gradient Approach</atitle><jtitle>IEEE open journal of the Communications Society</jtitle><stitle>OJCOMS</stitle><date>2024-11-25</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2644-125X</issn><eissn>2644-125X</eissn><coden>IOJCAZ</coden><abstract>To ensure extensive connectivity for a large number of Internet of Things (IoT) devices, there is a critical need for effective random access (RA). However, the substantial number of IoT users accessing the network leads to severe collisions, which cause delays in establishing successful RA connections and ultimately degrade system performance. While recent research has focused on binary preamble detection and the management of random access channel (RACH) overload, it has not specifically addressed RA overload for massive IoT users. This paper proposes a joint solution for preamble collision detection and timing advance (TA) prediction, referred to as PC-TA, inspired by generative adversarial networks (GANs). We utilize an actor-critic-based deep deterministic policy gradient (AC-DDPG) framework as one of the neural networks within the GAN, specifically designed to tackle preamble collision detection and resolution for numerous IoT users. In addition, we implement a fully connected graph neural network (GNN) as the second neural network in the GAN to predict timing advance (TA), which improves the average packet success rate and reduces overall latency. Simulation results validate the effectiveness of the proposed PC-TA, showing an approximate 85% gain over state-of-the-art methods in the existing literature. Consequently, this approach significantly enhances the chances of rapid RA success, allowing each IoT device to achieve successful RA with fewer trials.</abstract><pub>IEEE</pub><doi>10.1109/OJCOMS.2024.3506782</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2560-2724</orcidid><orcidid>https://orcid.org/0000-0001-7352-003X</orcidid><orcidid>https://orcid.org/0000-0003-2661-7108</orcidid><orcidid>https://orcid.org/0009-0003-1358-9766</orcidid><orcidid>https://orcid.org/0000-0001-6252-4641</orcidid><orcidid>https://orcid.org/0000-0001-6856-7466</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-125X
ispartof IEEE open journal of the Communications Society, 2024-11, p.1-1
issn 2644-125X
2644-125X
language eng
recordid cdi_crossref_primary_10_1109_OJCOMS_2024_3506782
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Collision avoidance
Deep reinforcement learning
Delays
Electrical engineering
Generative adversarial networks
Industrial Internet of Things
Internet of Things
IoT
Optimization
preamble collision
random access
Reliability
Resource management
title Random Access Optimization With Generative Adversarial Networks in Industrial IoT Using Deep Deterministic Policy Gradient Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Access%20Optimization%20With%20Generative%20Adversarial%20Networks%20in%20Industrial%20IoT%20Using%20Deep%20Deterministic%20Policy%20Gradient%20Approach&rft.jtitle=IEEE%20open%20journal%20of%20the%20Communications%20Society&rft.au=Ahmad,%20Ishtiaq&rft.date=2024-11-25&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2644-125X&rft.eissn=2644-125X&rft.coden=IOJCAZ&rft_id=info:doi/10.1109/OJCOMS.2024.3506782&rft_dat=%3Ccrossref_ieee_%3E10_1109_OJCOMS_2024_3506782%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10767602&rfr_iscdi=true