Bit Error Probability for Large Intelligent Surfaces Under Double-Nakagami Fading Channels
In this work, we investigate the probability distribution function of the channel fading between a base station, an array of intelligent reflecting elements, known as large intelligent surfaces (LIS), and a single-antenna user. We assume that both fading channels, i.e., the channel between the base...
Gespeichert in:
Veröffentlicht in: | IEEE open journal of the Communications Society 2020, Vol.1, p.750-759 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 759 |
---|---|
container_issue | |
container_start_page | 750 |
container_title | IEEE open journal of the Communications Society |
container_volume | 1 |
creator | Ferreira, Ricardo Coelho Facina, Michelle S. P. De Figueiredo, Felipe A. P. Fraidenraich, Gustavo De Lima, Eduardo Rodrigues |
description | In this work, we investigate the probability distribution function of the channel fading between a base station, an array of intelligent reflecting elements, known as large intelligent surfaces (LIS), and a single-antenna user. We assume that both fading channels, i.e., the channel between the base station and the LIS, and the channel between the LIS and the single user are Nakagami-m distributed. Additionally, we derive the exact bit error probability considering quadrature amplitude (M-QAM) and binary phase-shift keying (BPSK) modulations when the number of LIS elements, n, is equal to 2 and 3. We assume that the LIS can perform phase adjustment, but there is a residual phase error modeled by a Von Mises distribution. Based on the central limit theorem, and considering a large number of reflecting elements, we also present an accurate approximation and upper bounds for the bit error rate. Through several Monte Carlo simulations, we demonstrate that all derived expressions perfectly match the simulated results. |
doi_str_mv | 10.1109/OJCOMS.2020.2996797 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_OJCOMS_2020_2996797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9099217</ieee_id><doaj_id>oai_doaj_org_article_e8f60b64d3874a3c8f9fd55339cd7b82</doaj_id><sourcerecordid>2532109277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6b597cf7513a4fea61c144a46e60dd6538bbe7a19c42b9a160fd3264c8f24dec3</originalsourceid><addsrcrecordid>eNpNUctO3DAUjaoiFVG-gI2lrjP1K3a8bKdApxo6SICEurGu7evU0xBTJ7Pg7xsIQl3dh84593Gq6ozRFWPUfN79WO-ublaccrrixiht9LvqmCspa8ab-_f_5R-q03HcU0p5wxgT8rj69TVN5LyUXMh1yQ5c6tP0ROJcb6F0SDbDhH2fOhwmcnMoETyO5G4IWMi3fHA91j_hD3TwkMgFhDR0ZP0bhgH78WN1FKEf8fQ1nlR3F-e36-_1dne5WX_Z1l7SdqqVa4z2UTdMgIwIinkmJUiFioagGtE6hxqY8ZI7A0zRGMR8kW8jlwG9OKk2i27IsLePJT1AebIZkn1p5NJZKFPyPVpso6JOySBaLUHMEiaGphHC-KBdy2etT4vWY8l_DzhOdp8PZZjXt7wRfH4313pGiQXlSx7HgvFtKqP22RO7eGKfPbGvnsyss4WVEPGNYagxnGnxD5jGh98</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532109277</pqid></control><display><type>article</type><title>Bit Error Probability for Large Intelligent Surfaces Under Double-Nakagami Fading Channels</title><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>IEEE Xplore Open Access Journals</source><creator>Ferreira, Ricardo Coelho ; Facina, Michelle S. P. ; De Figueiredo, Felipe A. P. ; Fraidenraich, Gustavo ; De Lima, Eduardo Rodrigues</creator><creatorcontrib>Ferreira, Ricardo Coelho ; Facina, Michelle S. P. ; De Figueiredo, Felipe A. P. ; Fraidenraich, Gustavo ; De Lima, Eduardo Rodrigues</creatorcontrib><description>In this work, we investigate the probability distribution function of the channel fading between a base station, an array of intelligent reflecting elements, known as large intelligent surfaces (LIS), and a single-antenna user. We assume that both fading channels, i.e., the channel between the base station and the LIS, and the channel between the LIS and the single user are Nakagami-m distributed. Additionally, we derive the exact bit error probability considering quadrature amplitude (M-QAM) and binary phase-shift keying (BPSK) modulations when the number of LIS elements, n, is equal to 2 and 3. We assume that the LIS can perform phase adjustment, but there is a residual phase error modeled by a Von Mises distribution. Based on the central limit theorem, and considering a large number of reflecting elements, we also present an accurate approximation and upper bounds for the bit error rate. Through several Monte Carlo simulations, we demonstrate that all derived expressions perfectly match the simulated results.</description><identifier>ISSN: 2644-125X</identifier><identifier>EISSN: 2644-125X</identifier><identifier>DOI: 10.1109/OJCOMS.2020.2996797</identifier><identifier>CODEN: IOJCAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Base stations ; Binary phase shift keying ; Binary system ; Bit error rate ; Channel estimation ; Channels ; Codes ; Distribution functions ; Error probability ; Fading ; Fading channels ; large intelligent surfaces ; massive MIMO ; Nakagami-m fading ; Optimization ; Phase error ; Probability density function ; Probability distribution functions ; Quadratures ; Signal to noise ratio ; Upper bounds ; von Mises circular distribution</subject><ispartof>IEEE open journal of the Communications Society, 2020, Vol.1, p.750-759</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6b597cf7513a4fea61c144a46e60dd6538bbe7a19c42b9a160fd3264c8f24dec3</citedby><cites>FETCH-LOGICAL-c408t-6b597cf7513a4fea61c144a46e60dd6538bbe7a19c42b9a160fd3264c8f24dec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9099217$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27635,27925,27926,27927,54935</link.rule.ids></links><search><creatorcontrib>Ferreira, Ricardo Coelho</creatorcontrib><creatorcontrib>Facina, Michelle S. P.</creatorcontrib><creatorcontrib>De Figueiredo, Felipe A. P.</creatorcontrib><creatorcontrib>Fraidenraich, Gustavo</creatorcontrib><creatorcontrib>De Lima, Eduardo Rodrigues</creatorcontrib><title>Bit Error Probability for Large Intelligent Surfaces Under Double-Nakagami Fading Channels</title><title>IEEE open journal of the Communications Society</title><addtitle>OJCOMS</addtitle><description>In this work, we investigate the probability distribution function of the channel fading between a base station, an array of intelligent reflecting elements, known as large intelligent surfaces (LIS), and a single-antenna user. We assume that both fading channels, i.e., the channel between the base station and the LIS, and the channel between the LIS and the single user are Nakagami-m distributed. Additionally, we derive the exact bit error probability considering quadrature amplitude (M-QAM) and binary phase-shift keying (BPSK) modulations when the number of LIS elements, n, is equal to 2 and 3. We assume that the LIS can perform phase adjustment, but there is a residual phase error modeled by a Von Mises distribution. Based on the central limit theorem, and considering a large number of reflecting elements, we also present an accurate approximation and upper bounds for the bit error rate. Through several Monte Carlo simulations, we demonstrate that all derived expressions perfectly match the simulated results.</description><subject>Base stations</subject><subject>Binary phase shift keying</subject><subject>Binary system</subject><subject>Bit error rate</subject><subject>Channel estimation</subject><subject>Channels</subject><subject>Codes</subject><subject>Distribution functions</subject><subject>Error probability</subject><subject>Fading</subject><subject>Fading channels</subject><subject>large intelligent surfaces</subject><subject>massive MIMO</subject><subject>Nakagami-m fading</subject><subject>Optimization</subject><subject>Phase error</subject><subject>Probability density function</subject><subject>Probability distribution functions</subject><subject>Quadratures</subject><subject>Signal to noise ratio</subject><subject>Upper bounds</subject><subject>von Mises circular distribution</subject><issn>2644-125X</issn><issn>2644-125X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctO3DAUjaoiFVG-gI2lrjP1K3a8bKdApxo6SICEurGu7evU0xBTJ7Pg7xsIQl3dh84593Gq6ozRFWPUfN79WO-ublaccrrixiht9LvqmCspa8ab-_f_5R-q03HcU0p5wxgT8rj69TVN5LyUXMh1yQ5c6tP0ROJcb6F0SDbDhH2fOhwmcnMoETyO5G4IWMi3fHA91j_hD3TwkMgFhDR0ZP0bhgH78WN1FKEf8fQ1nlR3F-e36-_1dne5WX_Z1l7SdqqVa4z2UTdMgIwIinkmJUiFioagGtE6hxqY8ZI7A0zRGMR8kW8jlwG9OKk2i27IsLePJT1AebIZkn1p5NJZKFPyPVpso6JOySBaLUHMEiaGphHC-KBdy2etT4vWY8l_DzhOdp8PZZjXt7wRfH4313pGiQXlSx7HgvFtKqP22RO7eGKfPbGvnsyss4WVEPGNYagxnGnxD5jGh98</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ferreira, Ricardo Coelho</creator><creator>Facina, Michelle S. P.</creator><creator>De Figueiredo, Felipe A. P.</creator><creator>Fraidenraich, Gustavo</creator><creator>De Lima, Eduardo Rodrigues</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>Bit Error Probability for Large Intelligent Surfaces Under Double-Nakagami Fading Channels</title><author>Ferreira, Ricardo Coelho ; Facina, Michelle S. P. ; De Figueiredo, Felipe A. P. ; Fraidenraich, Gustavo ; De Lima, Eduardo Rodrigues</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6b597cf7513a4fea61c144a46e60dd6538bbe7a19c42b9a160fd3264c8f24dec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Base stations</topic><topic>Binary phase shift keying</topic><topic>Binary system</topic><topic>Bit error rate</topic><topic>Channel estimation</topic><topic>Channels</topic><topic>Codes</topic><topic>Distribution functions</topic><topic>Error probability</topic><topic>Fading</topic><topic>Fading channels</topic><topic>large intelligent surfaces</topic><topic>massive MIMO</topic><topic>Nakagami-m fading</topic><topic>Optimization</topic><topic>Phase error</topic><topic>Probability density function</topic><topic>Probability distribution functions</topic><topic>Quadratures</topic><topic>Signal to noise ratio</topic><topic>Upper bounds</topic><topic>von Mises circular distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Ricardo Coelho</creatorcontrib><creatorcontrib>Facina, Michelle S. P.</creatorcontrib><creatorcontrib>De Figueiredo, Felipe A. P.</creatorcontrib><creatorcontrib>Fraidenraich, Gustavo</creatorcontrib><creatorcontrib>De Lima, Eduardo Rodrigues</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of the Communications Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, Ricardo Coelho</au><au>Facina, Michelle S. P.</au><au>De Figueiredo, Felipe A. P.</au><au>Fraidenraich, Gustavo</au><au>De Lima, Eduardo Rodrigues</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bit Error Probability for Large Intelligent Surfaces Under Double-Nakagami Fading Channels</atitle><jtitle>IEEE open journal of the Communications Society</jtitle><stitle>OJCOMS</stitle><date>2020</date><risdate>2020</risdate><volume>1</volume><spage>750</spage><epage>759</epage><pages>750-759</pages><issn>2644-125X</issn><eissn>2644-125X</eissn><coden>IOJCAZ</coden><abstract>In this work, we investigate the probability distribution function of the channel fading between a base station, an array of intelligent reflecting elements, known as large intelligent surfaces (LIS), and a single-antenna user. We assume that both fading channels, i.e., the channel between the base station and the LIS, and the channel between the LIS and the single user are Nakagami-m distributed. Additionally, we derive the exact bit error probability considering quadrature amplitude (M-QAM) and binary phase-shift keying (BPSK) modulations when the number of LIS elements, n, is equal to 2 and 3. We assume that the LIS can perform phase adjustment, but there is a residual phase error modeled by a Von Mises distribution. Based on the central limit theorem, and considering a large number of reflecting elements, we also present an accurate approximation and upper bounds for the bit error rate. Through several Monte Carlo simulations, we demonstrate that all derived expressions perfectly match the simulated results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJCOMS.2020.2996797</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2644-125X |
ispartof | IEEE open journal of the Communications Society, 2020, Vol.1, p.750-759 |
issn | 2644-125X 2644-125X |
language | eng |
recordid | cdi_crossref_primary_10_1109_OJCOMS_2020_2996797 |
source | DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); IEEE Xplore Open Access Journals |
subjects | Base stations Binary phase shift keying Binary system Bit error rate Channel estimation Channels Codes Distribution functions Error probability Fading Fading channels large intelligent surfaces massive MIMO Nakagami-m fading Optimization Phase error Probability density function Probability distribution functions Quadratures Signal to noise ratio Upper bounds von Mises circular distribution |
title | Bit Error Probability for Large Intelligent Surfaces Under Double-Nakagami Fading Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T14%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bit%20Error%20Probability%20for%20Large%20Intelligent%20Surfaces%20Under%20Double-Nakagami%20Fading%20Channels&rft.jtitle=IEEE%20open%20journal%20of%20the%20Communications%20Society&rft.au=Ferreira,%20Ricardo%20Coelho&rft.date=2020&rft.volume=1&rft.spage=750&rft.epage=759&rft.pages=750-759&rft.issn=2644-125X&rft.eissn=2644-125X&rft.coden=IOJCAZ&rft_id=info:doi/10.1109/OJCOMS.2020.2996797&rft_dat=%3Cproquest_cross%3E2532109277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532109277&rft_id=info:pmid/&rft_ieee_id=9099217&rft_doaj_id=oai_doaj_org_article_e8f60b64d3874a3c8f9fd55339cd7b82&rfr_iscdi=true |