Bit Error Probability for Large Intelligent Surfaces Under Double-Nakagami Fading Channels

In this work, we investigate the probability distribution function of the channel fading between a base station, an array of intelligent reflecting elements, known as large intelligent surfaces (LIS), and a single-antenna user. We assume that both fading channels, i.e., the channel between the base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of the Communications Society 2020, Vol.1, p.750-759
Hauptverfasser: Ferreira, Ricardo Coelho, Facina, Michelle S. P., De Figueiredo, Felipe A. P., Fraidenraich, Gustavo, De Lima, Eduardo Rodrigues
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 759
container_issue
container_start_page 750
container_title IEEE open journal of the Communications Society
container_volume 1
creator Ferreira, Ricardo Coelho
Facina, Michelle S. P.
De Figueiredo, Felipe A. P.
Fraidenraich, Gustavo
De Lima, Eduardo Rodrigues
description In this work, we investigate the probability distribution function of the channel fading between a base station, an array of intelligent reflecting elements, known as large intelligent surfaces (LIS), and a single-antenna user. We assume that both fading channels, i.e., the channel between the base station and the LIS, and the channel between the LIS and the single user are Nakagami-m distributed. Additionally, we derive the exact bit error probability considering quadrature amplitude (M-QAM) and binary phase-shift keying (BPSK) modulations when the number of LIS elements, n, is equal to 2 and 3. We assume that the LIS can perform phase adjustment, but there is a residual phase error modeled by a Von Mises distribution. Based on the central limit theorem, and considering a large number of reflecting elements, we also present an accurate approximation and upper bounds for the bit error rate. Through several Monte Carlo simulations, we demonstrate that all derived expressions perfectly match the simulated results.
doi_str_mv 10.1109/OJCOMS.2020.2996797
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_OJCOMS_2020_2996797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9099217</ieee_id><doaj_id>oai_doaj_org_article_e8f60b64d3874a3c8f9fd55339cd7b82</doaj_id><sourcerecordid>2532109277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6b597cf7513a4fea61c144a46e60dd6538bbe7a19c42b9a160fd3264c8f24dec3</originalsourceid><addsrcrecordid>eNpNUctO3DAUjaoiFVG-gI2lrjP1K3a8bKdApxo6SICEurGu7evU0xBTJ7Pg7xsIQl3dh84593Gq6ozRFWPUfN79WO-ublaccrrixiht9LvqmCspa8ab-_f_5R-q03HcU0p5wxgT8rj69TVN5LyUXMh1yQ5c6tP0ROJcb6F0SDbDhH2fOhwmcnMoETyO5G4IWMi3fHA91j_hD3TwkMgFhDR0ZP0bhgH78WN1FKEf8fQ1nlR3F-e36-_1dne5WX_Z1l7SdqqVa4z2UTdMgIwIinkmJUiFioagGtE6hxqY8ZI7A0zRGMR8kW8jlwG9OKk2i27IsLePJT1AebIZkn1p5NJZKFPyPVpso6JOySBaLUHMEiaGphHC-KBdy2etT4vWY8l_DzhOdp8PZZjXt7wRfH4313pGiQXlSx7HgvFtKqP22RO7eGKfPbGvnsyss4WVEPGNYagxnGnxD5jGh98</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532109277</pqid></control><display><type>article</type><title>Bit Error Probability for Large Intelligent Surfaces Under Double-Nakagami Fading Channels</title><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>IEEE Xplore Open Access Journals</source><creator>Ferreira, Ricardo Coelho ; Facina, Michelle S. P. ; De Figueiredo, Felipe A. P. ; Fraidenraich, Gustavo ; De Lima, Eduardo Rodrigues</creator><creatorcontrib>Ferreira, Ricardo Coelho ; Facina, Michelle S. P. ; De Figueiredo, Felipe A. P. ; Fraidenraich, Gustavo ; De Lima, Eduardo Rodrigues</creatorcontrib><description>In this work, we investigate the probability distribution function of the channel fading between a base station, an array of intelligent reflecting elements, known as large intelligent surfaces (LIS), and a single-antenna user. We assume that both fading channels, i.e., the channel between the base station and the LIS, and the channel between the LIS and the single user are Nakagami-m distributed. Additionally, we derive the exact bit error probability considering quadrature amplitude (M-QAM) and binary phase-shift keying (BPSK) modulations when the number of LIS elements, n, is equal to 2 and 3. We assume that the LIS can perform phase adjustment, but there is a residual phase error modeled by a Von Mises distribution. Based on the central limit theorem, and considering a large number of reflecting elements, we also present an accurate approximation and upper bounds for the bit error rate. Through several Monte Carlo simulations, we demonstrate that all derived expressions perfectly match the simulated results.</description><identifier>ISSN: 2644-125X</identifier><identifier>EISSN: 2644-125X</identifier><identifier>DOI: 10.1109/OJCOMS.2020.2996797</identifier><identifier>CODEN: IOJCAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Base stations ; Binary phase shift keying ; Binary system ; Bit error rate ; Channel estimation ; Channels ; Codes ; Distribution functions ; Error probability ; Fading ; Fading channels ; large intelligent surfaces ; massive MIMO ; Nakagami-m fading ; Optimization ; Phase error ; Probability density function ; Probability distribution functions ; Quadratures ; Signal to noise ratio ; Upper bounds ; von Mises circular distribution</subject><ispartof>IEEE open journal of the Communications Society, 2020, Vol.1, p.750-759</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6b597cf7513a4fea61c144a46e60dd6538bbe7a19c42b9a160fd3264c8f24dec3</citedby><cites>FETCH-LOGICAL-c408t-6b597cf7513a4fea61c144a46e60dd6538bbe7a19c42b9a160fd3264c8f24dec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9099217$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27635,27925,27926,27927,54935</link.rule.ids></links><search><creatorcontrib>Ferreira, Ricardo Coelho</creatorcontrib><creatorcontrib>Facina, Michelle S. P.</creatorcontrib><creatorcontrib>De Figueiredo, Felipe A. P.</creatorcontrib><creatorcontrib>Fraidenraich, Gustavo</creatorcontrib><creatorcontrib>De Lima, Eduardo Rodrigues</creatorcontrib><title>Bit Error Probability for Large Intelligent Surfaces Under Double-Nakagami Fading Channels</title><title>IEEE open journal of the Communications Society</title><addtitle>OJCOMS</addtitle><description>In this work, we investigate the probability distribution function of the channel fading between a base station, an array of intelligent reflecting elements, known as large intelligent surfaces (LIS), and a single-antenna user. We assume that both fading channels, i.e., the channel between the base station and the LIS, and the channel between the LIS and the single user are Nakagami-m distributed. Additionally, we derive the exact bit error probability considering quadrature amplitude (M-QAM) and binary phase-shift keying (BPSK) modulations when the number of LIS elements, n, is equal to 2 and 3. We assume that the LIS can perform phase adjustment, but there is a residual phase error modeled by a Von Mises distribution. Based on the central limit theorem, and considering a large number of reflecting elements, we also present an accurate approximation and upper bounds for the bit error rate. Through several Monte Carlo simulations, we demonstrate that all derived expressions perfectly match the simulated results.</description><subject>Base stations</subject><subject>Binary phase shift keying</subject><subject>Binary system</subject><subject>Bit error rate</subject><subject>Channel estimation</subject><subject>Channels</subject><subject>Codes</subject><subject>Distribution functions</subject><subject>Error probability</subject><subject>Fading</subject><subject>Fading channels</subject><subject>large intelligent surfaces</subject><subject>massive MIMO</subject><subject>Nakagami-m fading</subject><subject>Optimization</subject><subject>Phase error</subject><subject>Probability density function</subject><subject>Probability distribution functions</subject><subject>Quadratures</subject><subject>Signal to noise ratio</subject><subject>Upper bounds</subject><subject>von Mises circular distribution</subject><issn>2644-125X</issn><issn>2644-125X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctO3DAUjaoiFVG-gI2lrjP1K3a8bKdApxo6SICEurGu7evU0xBTJ7Pg7xsIQl3dh84593Gq6ozRFWPUfN79WO-ublaccrrixiht9LvqmCspa8ab-_f_5R-q03HcU0p5wxgT8rj69TVN5LyUXMh1yQ5c6tP0ROJcb6F0SDbDhH2fOhwmcnMoETyO5G4IWMi3fHA91j_hD3TwkMgFhDR0ZP0bhgH78WN1FKEf8fQ1nlR3F-e36-_1dne5WX_Z1l7SdqqVa4z2UTdMgIwIinkmJUiFioagGtE6hxqY8ZI7A0zRGMR8kW8jlwG9OKk2i27IsLePJT1AebIZkn1p5NJZKFPyPVpso6JOySBaLUHMEiaGphHC-KBdy2etT4vWY8l_DzhOdp8PZZjXt7wRfH4313pGiQXlSx7HgvFtKqP22RO7eGKfPbGvnsyss4WVEPGNYagxnGnxD5jGh98</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ferreira, Ricardo Coelho</creator><creator>Facina, Michelle S. P.</creator><creator>De Figueiredo, Felipe A. P.</creator><creator>Fraidenraich, Gustavo</creator><creator>De Lima, Eduardo Rodrigues</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>Bit Error Probability for Large Intelligent Surfaces Under Double-Nakagami Fading Channels</title><author>Ferreira, Ricardo Coelho ; Facina, Michelle S. P. ; De Figueiredo, Felipe A. P. ; Fraidenraich, Gustavo ; De Lima, Eduardo Rodrigues</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6b597cf7513a4fea61c144a46e60dd6538bbe7a19c42b9a160fd3264c8f24dec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Base stations</topic><topic>Binary phase shift keying</topic><topic>Binary system</topic><topic>Bit error rate</topic><topic>Channel estimation</topic><topic>Channels</topic><topic>Codes</topic><topic>Distribution functions</topic><topic>Error probability</topic><topic>Fading</topic><topic>Fading channels</topic><topic>large intelligent surfaces</topic><topic>massive MIMO</topic><topic>Nakagami-m fading</topic><topic>Optimization</topic><topic>Phase error</topic><topic>Probability density function</topic><topic>Probability distribution functions</topic><topic>Quadratures</topic><topic>Signal to noise ratio</topic><topic>Upper bounds</topic><topic>von Mises circular distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Ricardo Coelho</creatorcontrib><creatorcontrib>Facina, Michelle S. P.</creatorcontrib><creatorcontrib>De Figueiredo, Felipe A. P.</creatorcontrib><creatorcontrib>Fraidenraich, Gustavo</creatorcontrib><creatorcontrib>De Lima, Eduardo Rodrigues</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of the Communications Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, Ricardo Coelho</au><au>Facina, Michelle S. P.</au><au>De Figueiredo, Felipe A. P.</au><au>Fraidenraich, Gustavo</au><au>De Lima, Eduardo Rodrigues</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bit Error Probability for Large Intelligent Surfaces Under Double-Nakagami Fading Channels</atitle><jtitle>IEEE open journal of the Communications Society</jtitle><stitle>OJCOMS</stitle><date>2020</date><risdate>2020</risdate><volume>1</volume><spage>750</spage><epage>759</epage><pages>750-759</pages><issn>2644-125X</issn><eissn>2644-125X</eissn><coden>IOJCAZ</coden><abstract>In this work, we investigate the probability distribution function of the channel fading between a base station, an array of intelligent reflecting elements, known as large intelligent surfaces (LIS), and a single-antenna user. We assume that both fading channels, i.e., the channel between the base station and the LIS, and the channel between the LIS and the single user are Nakagami-m distributed. Additionally, we derive the exact bit error probability considering quadrature amplitude (M-QAM) and binary phase-shift keying (BPSK) modulations when the number of LIS elements, n, is equal to 2 and 3. We assume that the LIS can perform phase adjustment, but there is a residual phase error modeled by a Von Mises distribution. Based on the central limit theorem, and considering a large number of reflecting elements, we also present an accurate approximation and upper bounds for the bit error rate. Through several Monte Carlo simulations, we demonstrate that all derived expressions perfectly match the simulated results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJCOMS.2020.2996797</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-125X
ispartof IEEE open journal of the Communications Society, 2020, Vol.1, p.750-759
issn 2644-125X
2644-125X
language eng
recordid cdi_crossref_primary_10_1109_OJCOMS_2020_2996797
source DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); IEEE Xplore Open Access Journals
subjects Base stations
Binary phase shift keying
Binary system
Bit error rate
Channel estimation
Channels
Codes
Distribution functions
Error probability
Fading
Fading channels
large intelligent surfaces
massive MIMO
Nakagami-m fading
Optimization
Phase error
Probability density function
Probability distribution functions
Quadratures
Signal to noise ratio
Upper bounds
von Mises circular distribution
title Bit Error Probability for Large Intelligent Surfaces Under Double-Nakagami Fading Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T14%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bit%20Error%20Probability%20for%20Large%20Intelligent%20Surfaces%20Under%20Double-Nakagami%20Fading%20Channels&rft.jtitle=IEEE%20open%20journal%20of%20the%20Communications%20Society&rft.au=Ferreira,%20Ricardo%20Coelho&rft.date=2020&rft.volume=1&rft.spage=750&rft.epage=759&rft.pages=750-759&rft.issn=2644-125X&rft.eissn=2644-125X&rft.coden=IOJCAZ&rft_id=info:doi/10.1109/OJCOMS.2020.2996797&rft_dat=%3Cproquest_cross%3E2532109277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532109277&rft_id=info:pmid/&rft_ieee_id=9099217&rft_doaj_id=oai_doaj_org_article_e8f60b64d3874a3c8f9fd55339cd7b82&rfr_iscdi=true