GPU-Based, LDPC Decoding for 5G and Beyond

In 5G New Radio (NR), low-density parity-check (LDPC) codes are included as the error correction codes (ECC) for the data channel. While LDPC codes enable a low, near Shannon capacity, bit error rate (BER), they also become a computational bottleneck in the physical layer processing. Moreover, 5G LD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of circuits and systems 2021, Vol.2, p.278-290
Hauptverfasser: Tarver, Chance, Tonnemacher, Matthew, Chen, Hao, Zhang, Jianzhong, Cavallaro, Joseph R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue
container_start_page 278
container_title IEEE open journal of circuits and systems
container_volume 2
creator Tarver, Chance
Tonnemacher, Matthew
Chen, Hao
Zhang, Jianzhong
Cavallaro, Joseph R.
description In 5G New Radio (NR), low-density parity-check (LDPC) codes are included as the error correction codes (ECC) for the data channel. While LDPC codes enable a low, near Shannon capacity, bit error rate (BER), they also become a computational bottleneck in the physical layer processing. Moreover, 5G LDPC has new challenges not seen in previous LDPC implementations, such as Wi-Fi. The LDPC specification in 5G includes many reconfigurations to support a variety of rates, block sizes, and use cases. 5G also creates targets for supporting high-throughput and low-latency applications. For this new, flexible standard, traditional hardware-based solutions in FGPA and ASIC may struggle to support all cases and may be cost-prohibitive at scale. Software solutions can trivially support all possible reconfigurations but struggle with performance. This article demonstrates the high-throughput and low-latency capabilities of graphics processing units (GPUs) for LDPC decoding as an alternative to FPGA and ASIC decoders, effectively providing the high performance needed while maintaining the benefits of a software-based solution. In particular, we highlight how by varying the parallelization strategy for mapping GPU kernels to blocks, we can use the many GPU cores to compute one codeword quickly to target low-latency, or we can use the cores to work on many codewords simultaneously to target high throughput applications. This flexibility is particularly useful for virtualized radio access networks (vRAN), a next-generation technology that is expected to become more prominent in the coming years. In vRAN, the hardware computational resources will become decoupled from the specific computational functions in the RAN through virtualization, allowing for benefits such as load-balancing, improved scalability, and reduced costs. To highlight and investigate how the GPU can accelerate tasks such as LDPC decoding when containerizing vRAN functionality, we integrate our decoder into the Open Air Interface (OAI) NR software stack. With our GPU-based decoder, we measure a best case-latency of 87~\mu \text{s} and a best-case throughput of nearly 4 Gbps using the Titan RTX GPU.
doi_str_mv 10.1109/OJCAS.2020.3042448
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_OJCAS_2020_3042448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9336349</ieee_id><doaj_id>oai_doaj_org_article_d5affd78d05c4866b8772944e3403e7b</doaj_id><sourcerecordid>2531562322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3208-b5c3b438a3a8d8e6882fb8f8bce1a3fcd0c8602ca927c289612a47e7d03ed1cc3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhhujiQT5A3pp4s1Y3J397BGKIoYEEuW82e4HKcEubuXAv7dQQjzNZDLvM5MnSe4xGmKM8pfFRzH6HAICNCSIAqXyKukBpzTDAOz6X3-bDJpmgxAChjEG0UuepstVNtaNs8_pfLIs0okzwVb1OvUhpmya6tqmY3cItb1LbrzeNm5wrv1k9fb6Vbxn88V0VozmmSGAZFYyQ0pKpCZaWum4lOBL6WVpHNbEG4uM5AiMzkEYkDnHoKlwwiLiLDaG9JNZx7VBb9QuVt86HlTQlToNQlwrHX8rs3XKMu29FdIiZqjkvJRCQE6pI7SlibJlPXasXQw_e9f8qk3Yx7p9XwEjmHEgAO0WdFsmhqaJzl-uYqSOitVJsToqVmfFbeihC1XOuUsgJ4QTmpM_fedy8g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531562322</pqid></control><display><type>article</type><title>GPU-Based, LDPC Decoding for 5G and Beyond</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tarver, Chance ; Tonnemacher, Matthew ; Chen, Hao ; Zhang, Jianzhong ; Cavallaro, Joseph R.</creator><creatorcontrib>Tarver, Chance ; Tonnemacher, Matthew ; Chen, Hao ; Zhang, Jianzhong ; Cavallaro, Joseph R.</creatorcontrib><description>In 5G New Radio (NR), low-density parity-check (LDPC) codes are included as the error correction codes (ECC) for the data channel. While LDPC codes enable a low, near Shannon capacity, bit error rate (BER), they also become a computational bottleneck in the physical layer processing. Moreover, 5G LDPC has new challenges not seen in previous LDPC implementations, such as Wi-Fi. The LDPC specification in 5G includes many reconfigurations to support a variety of rates, block sizes, and use cases. 5G also creates targets for supporting high-throughput and low-latency applications. For this new, flexible standard, traditional hardware-based solutions in FGPA and ASIC may struggle to support all cases and may be cost-prohibitive at scale. Software solutions can trivially support all possible reconfigurations but struggle with performance. This article demonstrates the high-throughput and low-latency capabilities of graphics processing units (GPUs) for LDPC decoding as an alternative to FPGA and ASIC decoders, effectively providing the high performance needed while maintaining the benefits of a software-based solution. In particular, we highlight how by varying the parallelization strategy for mapping GPU kernels to blocks, we can use the many GPU cores to compute one codeword quickly to target low-latency, or we can use the cores to work on many codewords simultaneously to target high throughput applications. This flexibility is particularly useful for virtualized radio access networks (vRAN), a next-generation technology that is expected to become more prominent in the coming years. In vRAN, the hardware computational resources will become decoupled from the specific computational functions in the RAN through virtualization, allowing for benefits such as load-balancing, improved scalability, and reduced costs. To highlight and investigate how the GPU can accelerate tasks such as LDPC decoding when containerizing vRAN functionality, we integrate our decoder into the Open Air Interface (OAI) NR software stack. With our GPU-based decoder, we measure a best case-latency of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;87~\mu \text{s} &lt;/tex-math&gt;&lt;/inline-formula&gt; and a best-case throughput of nearly 4 Gbps using the Titan RTX GPU.</description><identifier>ISSN: 2644-1225</identifier><identifier>EISSN: 2644-1225</identifier><identifier>DOI: 10.1109/OJCAS.2020.3042448</identifier><identifier>CODEN: IOJCC3</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G mobile communication ; Application specific integrated circuits ; Binary system ; Bit error rate ; Codes ; Decoders ; Decoding ; Error correcting codes ; Error correction ; GPU ; Graphics processing units ; Hardware ; LDPC ; OAI ; Parallel processing ; Parity check codes ; SDR ; Software ; Throughput ; Virtual networks ; vRAN</subject><ispartof>IEEE open journal of circuits and systems, 2021, Vol.2, p.278-290</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3208-b5c3b438a3a8d8e6882fb8f8bce1a3fcd0c8602ca927c289612a47e7d03ed1cc3</citedby><cites>FETCH-LOGICAL-c3208-b5c3b438a3a8d8e6882fb8f8bce1a3fcd0c8602ca927c289612a47e7d03ed1cc3</cites><orcidid>0000-0002-4100-7589 ; 0000-0002-9841-1806 ; 0000-0003-0814-9144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9336349$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27635,27925,27926,27927,54935</link.rule.ids></links><search><creatorcontrib>Tarver, Chance</creatorcontrib><creatorcontrib>Tonnemacher, Matthew</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Zhang, Jianzhong</creatorcontrib><creatorcontrib>Cavallaro, Joseph R.</creatorcontrib><title>GPU-Based, LDPC Decoding for 5G and Beyond</title><title>IEEE open journal of circuits and systems</title><addtitle>OJCAS</addtitle><description>In 5G New Radio (NR), low-density parity-check (LDPC) codes are included as the error correction codes (ECC) for the data channel. While LDPC codes enable a low, near Shannon capacity, bit error rate (BER), they also become a computational bottleneck in the physical layer processing. Moreover, 5G LDPC has new challenges not seen in previous LDPC implementations, such as Wi-Fi. The LDPC specification in 5G includes many reconfigurations to support a variety of rates, block sizes, and use cases. 5G also creates targets for supporting high-throughput and low-latency applications. For this new, flexible standard, traditional hardware-based solutions in FGPA and ASIC may struggle to support all cases and may be cost-prohibitive at scale. Software solutions can trivially support all possible reconfigurations but struggle with performance. This article demonstrates the high-throughput and low-latency capabilities of graphics processing units (GPUs) for LDPC decoding as an alternative to FPGA and ASIC decoders, effectively providing the high performance needed while maintaining the benefits of a software-based solution. In particular, we highlight how by varying the parallelization strategy for mapping GPU kernels to blocks, we can use the many GPU cores to compute one codeword quickly to target low-latency, or we can use the cores to work on many codewords simultaneously to target high throughput applications. This flexibility is particularly useful for virtualized radio access networks (vRAN), a next-generation technology that is expected to become more prominent in the coming years. In vRAN, the hardware computational resources will become decoupled from the specific computational functions in the RAN through virtualization, allowing for benefits such as load-balancing, improved scalability, and reduced costs. To highlight and investigate how the GPU can accelerate tasks such as LDPC decoding when containerizing vRAN functionality, we integrate our decoder into the Open Air Interface (OAI) NR software stack. With our GPU-based decoder, we measure a best case-latency of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;87~\mu \text{s} &lt;/tex-math&gt;&lt;/inline-formula&gt; and a best-case throughput of nearly 4 Gbps using the Titan RTX GPU.</description><subject>5G mobile communication</subject><subject>Application specific integrated circuits</subject><subject>Binary system</subject><subject>Bit error rate</subject><subject>Codes</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Error correcting codes</subject><subject>Error correction</subject><subject>GPU</subject><subject>Graphics processing units</subject><subject>Hardware</subject><subject>LDPC</subject><subject>OAI</subject><subject>Parallel processing</subject><subject>Parity check codes</subject><subject>SDR</subject><subject>Software</subject><subject>Throughput</subject><subject>Virtual networks</subject><subject>vRAN</subject><issn>2644-1225</issn><issn>2644-1225</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1PwkAQhhujiQT5A3pp4s1Y3J397BGKIoYEEuW82e4HKcEubuXAv7dQQjzNZDLvM5MnSe4xGmKM8pfFRzH6HAICNCSIAqXyKukBpzTDAOz6X3-bDJpmgxAChjEG0UuepstVNtaNs8_pfLIs0okzwVb1OvUhpmya6tqmY3cItb1LbrzeNm5wrv1k9fb6Vbxn88V0VozmmSGAZFYyQ0pKpCZaWum4lOBL6WVpHNbEG4uM5AiMzkEYkDnHoKlwwiLiLDaG9JNZx7VBb9QuVt86HlTQlToNQlwrHX8rs3XKMu29FdIiZqjkvJRCQE6pI7SlibJlPXasXQw_e9f8qk3Yx7p9XwEjmHEgAO0WdFsmhqaJzl-uYqSOitVJsToqVmfFbeihC1XOuUsgJ4QTmpM_fedy8g</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Tarver, Chance</creator><creator>Tonnemacher, Matthew</creator><creator>Chen, Hao</creator><creator>Zhang, Jianzhong</creator><creator>Cavallaro, Joseph R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4100-7589</orcidid><orcidid>https://orcid.org/0000-0002-9841-1806</orcidid><orcidid>https://orcid.org/0000-0003-0814-9144</orcidid></search><sort><creationdate>2021</creationdate><title>GPU-Based, LDPC Decoding for 5G and Beyond</title><author>Tarver, Chance ; Tonnemacher, Matthew ; Chen, Hao ; Zhang, Jianzhong ; Cavallaro, Joseph R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3208-b5c3b438a3a8d8e6882fb8f8bce1a3fcd0c8602ca927c289612a47e7d03ed1cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>5G mobile communication</topic><topic>Application specific integrated circuits</topic><topic>Binary system</topic><topic>Bit error rate</topic><topic>Codes</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Error correcting codes</topic><topic>Error correction</topic><topic>GPU</topic><topic>Graphics processing units</topic><topic>Hardware</topic><topic>LDPC</topic><topic>OAI</topic><topic>Parallel processing</topic><topic>Parity check codes</topic><topic>SDR</topic><topic>Software</topic><topic>Throughput</topic><topic>Virtual networks</topic><topic>vRAN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarver, Chance</creatorcontrib><creatorcontrib>Tonnemacher, Matthew</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Zhang, Jianzhong</creatorcontrib><creatorcontrib>Cavallaro, Joseph R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarver, Chance</au><au>Tonnemacher, Matthew</au><au>Chen, Hao</au><au>Zhang, Jianzhong</au><au>Cavallaro, Joseph R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPU-Based, LDPC Decoding for 5G and Beyond</atitle><jtitle>IEEE open journal of circuits and systems</jtitle><stitle>OJCAS</stitle><date>2021</date><risdate>2021</risdate><volume>2</volume><spage>278</spage><epage>290</epage><pages>278-290</pages><issn>2644-1225</issn><eissn>2644-1225</eissn><coden>IOJCC3</coden><abstract>In 5G New Radio (NR), low-density parity-check (LDPC) codes are included as the error correction codes (ECC) for the data channel. While LDPC codes enable a low, near Shannon capacity, bit error rate (BER), they also become a computational bottleneck in the physical layer processing. Moreover, 5G LDPC has new challenges not seen in previous LDPC implementations, such as Wi-Fi. The LDPC specification in 5G includes many reconfigurations to support a variety of rates, block sizes, and use cases. 5G also creates targets for supporting high-throughput and low-latency applications. For this new, flexible standard, traditional hardware-based solutions in FGPA and ASIC may struggle to support all cases and may be cost-prohibitive at scale. Software solutions can trivially support all possible reconfigurations but struggle with performance. This article demonstrates the high-throughput and low-latency capabilities of graphics processing units (GPUs) for LDPC decoding as an alternative to FPGA and ASIC decoders, effectively providing the high performance needed while maintaining the benefits of a software-based solution. In particular, we highlight how by varying the parallelization strategy for mapping GPU kernels to blocks, we can use the many GPU cores to compute one codeword quickly to target low-latency, or we can use the cores to work on many codewords simultaneously to target high throughput applications. This flexibility is particularly useful for virtualized radio access networks (vRAN), a next-generation technology that is expected to become more prominent in the coming years. In vRAN, the hardware computational resources will become decoupled from the specific computational functions in the RAN through virtualization, allowing for benefits such as load-balancing, improved scalability, and reduced costs. To highlight and investigate how the GPU can accelerate tasks such as LDPC decoding when containerizing vRAN functionality, we integrate our decoder into the Open Air Interface (OAI) NR software stack. With our GPU-based decoder, we measure a best case-latency of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;87~\mu \text{s} &lt;/tex-math&gt;&lt;/inline-formula&gt; and a best-case throughput of nearly 4 Gbps using the Titan RTX GPU.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJCAS.2020.3042448</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4100-7589</orcidid><orcidid>https://orcid.org/0000-0002-9841-1806</orcidid><orcidid>https://orcid.org/0000-0003-0814-9144</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-1225
ispartof IEEE open journal of circuits and systems, 2021, Vol.2, p.278-290
issn 2644-1225
2644-1225
language eng
recordid cdi_crossref_primary_10_1109_OJCAS_2020_3042448
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects 5G mobile communication
Application specific integrated circuits
Binary system
Bit error rate
Codes
Decoders
Decoding
Error correcting codes
Error correction
GPU
Graphics processing units
Hardware
LDPC
OAI
Parallel processing
Parity check codes
SDR
Software
Throughput
Virtual networks
vRAN
title GPU-Based, LDPC Decoding for 5G and Beyond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPU-Based,%20LDPC%20Decoding%20for%205G%20and%20Beyond&rft.jtitle=IEEE%20open%20journal%20of%20circuits%20and%20systems&rft.au=Tarver,%20Chance&rft.date=2021&rft.volume=2&rft.spage=278&rft.epage=290&rft.pages=278-290&rft.issn=2644-1225&rft.eissn=2644-1225&rft.coden=IOJCC3&rft_id=info:doi/10.1109/OJCAS.2020.3042448&rft_dat=%3Cproquest_cross%3E2531562322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531562322&rft_id=info:pmid/&rft_ieee_id=9336349&rft_doaj_id=oai_doaj_org_article_d5affd78d05c4866b8772944e3403e7b&rfr_iscdi=true