Indirect Applications of Additive Manufacturing for Antennas
We report the fabrication methodology of stereolithography (SLA) printed molds for metal and resin cast antennas. In the first method, a conical horn created using metal cast molds printed from a glass-filled resin utilizes a casting technique allowing for low-cost 3D printing to fabricate metal ant...
Gespeichert in:
Veröffentlicht in: | IEEE Open Journal of Antennas and Propagation 2023-01, Vol.4, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE Open Journal of Antennas and Propagation |
container_volume | 4 |
creator | Lundquist, Jonathan D. Linkous, Lauren Hasni, Umar Topsakal, Erdem |
description | We report the fabrication methodology of stereolithography (SLA) printed molds for metal and resin cast antennas. In the first method, a conical horn created using metal cast molds printed from a glass-filled resin utilizes a casting technique allowing for low-cost 3D printing to fabricate metal antennas, reducing the losses incurred by metallized plastics, while still producing complex geometries quickly. This metal cast conical horn is compared to a horn constructed using a more traditional 3D printing method. The second casting method demonstrates the interchangeability between creating parts via SLA printing with a glass-filled resin and using the same resin cast into a reusable Polydimethylsiloxane (PDMS) mold. We demonstrate this method by casting an interchangeable slug for a capacitively coupled, mechanically reconfigurable disk loaded monopole. Simulated and experimental data are presented for S11, and Gain. Simulated BW, directivity, gain and efficiency as a function of frequency are presented. The results indicate that the 3D printed metal casting process produces antennas with a higher gain and lower return loss than metallized resin antennas. The method is suitable for difficult geometries requiring resolution of at least 50 lm. The capacitively coupled disk loaded monopole demonstrates the versatility of 3D printing in antenna fabrication. |
doi_str_mv | 10.1109/OJAP.2023.3265691 |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_OJAP_2023_3265691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10097881</ieee_id><doaj_id>oai_doaj_org_article_ab55fbaa7c61495bbf8453b61c7039fd</doaj_id><sourcerecordid>oai_doaj_org_article_ab55fbaa7c61495bbf8453b61c7039fd</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-fe4b749769aefa34e66d1c5136fd3bfdc6f1f743dbb0f1022578270421c23c693</originalsourceid><addsrcrecordid>eNpNkMtKA0EQRRtRMMR8gOBifmBiVz-nwc0QfEQicaHrpp-hQ5wOPRPBvzcxQbKqorj3FByEbgFPAbC6X76271OCCZ1SIrhQcIFGRFBZC0bh8my_RpO-X2OMCQcAIkboYd75VIIbqna73SRnhpS7vsqxar1PQ_oO1ZvpdtG4YVdSt6piLlXbDaHrTH-DrqLZ9GFymmP0-fT4MXupF8vn-axd1I5KPtQxMCuZkkKZEA1lQQgPjgMV0VMbvRMRomTUW4sjYEK4bIjEjIAj1AlFx2h-5Pps1npb0pcpPzqbpP8Ouay0KUNym6CN5TxaY6QTwBS3NjaMUyvASUzV_t8YwZHlSu77EuI_D7A-2NQHm_pgU59s7jt3x04KIZzlsZJNA_QXvPlwTw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Indirect Applications of Additive Manufacturing for Antennas</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Lundquist, Jonathan D. ; Linkous, Lauren ; Hasni, Umar ; Topsakal, Erdem</creator><creatorcontrib>Lundquist, Jonathan D. ; Linkous, Lauren ; Hasni, Umar ; Topsakal, Erdem</creatorcontrib><description>We report the fabrication methodology of stereolithography (SLA) printed molds for metal and resin cast antennas. In the first method, a conical horn created using metal cast molds printed from a glass-filled resin utilizes a casting technique allowing for low-cost 3D printing to fabricate metal antennas, reducing the losses incurred by metallized plastics, while still producing complex geometries quickly. This metal cast conical horn is compared to a horn constructed using a more traditional 3D printing method. The second casting method demonstrates the interchangeability between creating parts via SLA printing with a glass-filled resin and using the same resin cast into a reusable Polydimethylsiloxane (PDMS) mold. We demonstrate this method by casting an interchangeable slug for a capacitively coupled, mechanically reconfigurable disk loaded monopole. Simulated and experimental data are presented for S11, and Gain. Simulated BW, directivity, gain and efficiency as a function of frequency are presented. The results indicate that the 3D printed metal casting process produces antennas with a higher gain and lower return loss than metallized resin antennas. The method is suitable for difficult geometries requiring resolution of at least 50 lm. The capacitively coupled disk loaded monopole demonstrates the versatility of 3D printing in antenna fabrication.</description><identifier>ISSN: 2637-6431</identifier><identifier>EISSN: 2637-6431</identifier><identifier>DOI: 10.1109/OJAP.2023.3265691</identifier><identifier>CODEN: IJSTK4</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D printed antenna ; Antennas ; Casting ; conical horn ; disk loaded monopole ; Fabrication ; metal casting ; Metals ; resin casting ; Resins ; Three-dimensional displays ; Three-dimensional printing</subject><ispartof>IEEE Open Journal of Antennas and Propagation, 2023-01, Vol.4, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-fe4b749769aefa34e66d1c5136fd3bfdc6f1f743dbb0f1022578270421c23c693</citedby><cites>FETCH-LOGICAL-c375t-fe4b749769aefa34e66d1c5136fd3bfdc6f1f743dbb0f1022578270421c23c693</cites><orcidid>0000-0003-3096-7274 ; 0000-0002-0022-785X ; 0000-0002-2351-0535 ; 0000-0001-9945-5125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10097881$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lundquist, Jonathan D.</creatorcontrib><creatorcontrib>Linkous, Lauren</creatorcontrib><creatorcontrib>Hasni, Umar</creatorcontrib><creatorcontrib>Topsakal, Erdem</creatorcontrib><title>Indirect Applications of Additive Manufacturing for Antennas</title><title>IEEE Open Journal of Antennas and Propagation</title><addtitle>OJAP</addtitle><description>We report the fabrication methodology of stereolithography (SLA) printed molds for metal and resin cast antennas. In the first method, a conical horn created using metal cast molds printed from a glass-filled resin utilizes a casting technique allowing for low-cost 3D printing to fabricate metal antennas, reducing the losses incurred by metallized plastics, while still producing complex geometries quickly. This metal cast conical horn is compared to a horn constructed using a more traditional 3D printing method. The second casting method demonstrates the interchangeability between creating parts via SLA printing with a glass-filled resin and using the same resin cast into a reusable Polydimethylsiloxane (PDMS) mold. We demonstrate this method by casting an interchangeable slug for a capacitively coupled, mechanically reconfigurable disk loaded monopole. Simulated and experimental data are presented for S11, and Gain. Simulated BW, directivity, gain and efficiency as a function of frequency are presented. The results indicate that the 3D printed metal casting process produces antennas with a higher gain and lower return loss than metallized resin antennas. The method is suitable for difficult geometries requiring resolution of at least 50 lm. The capacitively coupled disk loaded monopole demonstrates the versatility of 3D printing in antenna fabrication.</description><subject>3D printed antenna</subject><subject>Antennas</subject><subject>Casting</subject><subject>conical horn</subject><subject>disk loaded monopole</subject><subject>Fabrication</subject><subject>metal casting</subject><subject>Metals</subject><subject>resin casting</subject><subject>Resins</subject><subject>Three-dimensional displays</subject><subject>Three-dimensional printing</subject><issn>2637-6431</issn><issn>2637-6431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkMtKA0EQRRtRMMR8gOBifmBiVz-nwc0QfEQicaHrpp-hQ5wOPRPBvzcxQbKqorj3FByEbgFPAbC6X76271OCCZ1SIrhQcIFGRFBZC0bh8my_RpO-X2OMCQcAIkboYd75VIIbqna73SRnhpS7vsqxar1PQ_oO1ZvpdtG4YVdSt6piLlXbDaHrTH-DrqLZ9GFymmP0-fT4MXupF8vn-axd1I5KPtQxMCuZkkKZEA1lQQgPjgMV0VMbvRMRomTUW4sjYEK4bIjEjIAj1AlFx2h-5Pps1npb0pcpPzqbpP8Ouay0KUNym6CN5TxaY6QTwBS3NjaMUyvASUzV_t8YwZHlSu77EuI_D7A-2NQHm_pgU59s7jt3x04KIZzlsZJNA_QXvPlwTw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Lundquist, Jonathan D.</creator><creator>Linkous, Lauren</creator><creator>Hasni, Umar</creator><creator>Topsakal, Erdem</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3096-7274</orcidid><orcidid>https://orcid.org/0000-0002-0022-785X</orcidid><orcidid>https://orcid.org/0000-0002-2351-0535</orcidid><orcidid>https://orcid.org/0000-0001-9945-5125</orcidid></search><sort><creationdate>20230101</creationdate><title>Indirect Applications of Additive Manufacturing for Antennas</title><author>Lundquist, Jonathan D. ; Linkous, Lauren ; Hasni, Umar ; Topsakal, Erdem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-fe4b749769aefa34e66d1c5136fd3bfdc6f1f743dbb0f1022578270421c23c693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printed antenna</topic><topic>Antennas</topic><topic>Casting</topic><topic>conical horn</topic><topic>disk loaded monopole</topic><topic>Fabrication</topic><topic>metal casting</topic><topic>Metals</topic><topic>resin casting</topic><topic>Resins</topic><topic>Three-dimensional displays</topic><topic>Three-dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lundquist, Jonathan D.</creatorcontrib><creatorcontrib>Linkous, Lauren</creatorcontrib><creatorcontrib>Hasni, Umar</creatorcontrib><creatorcontrib>Topsakal, Erdem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE Open Journal of Antennas and Propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lundquist, Jonathan D.</au><au>Linkous, Lauren</au><au>Hasni, Umar</au><au>Topsakal, Erdem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indirect Applications of Additive Manufacturing for Antennas</atitle><jtitle>IEEE Open Journal of Antennas and Propagation</jtitle><stitle>OJAP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>4</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2637-6431</issn><eissn>2637-6431</eissn><coden>IJSTK4</coden><abstract>We report the fabrication methodology of stereolithography (SLA) printed molds for metal and resin cast antennas. In the first method, a conical horn created using metal cast molds printed from a glass-filled resin utilizes a casting technique allowing for low-cost 3D printing to fabricate metal antennas, reducing the losses incurred by metallized plastics, while still producing complex geometries quickly. This metal cast conical horn is compared to a horn constructed using a more traditional 3D printing method. The second casting method demonstrates the interchangeability between creating parts via SLA printing with a glass-filled resin and using the same resin cast into a reusable Polydimethylsiloxane (PDMS) mold. We demonstrate this method by casting an interchangeable slug for a capacitively coupled, mechanically reconfigurable disk loaded monopole. Simulated and experimental data are presented for S11, and Gain. Simulated BW, directivity, gain and efficiency as a function of frequency are presented. The results indicate that the 3D printed metal casting process produces antennas with a higher gain and lower return loss than metallized resin antennas. The method is suitable for difficult geometries requiring resolution of at least 50 lm. The capacitively coupled disk loaded monopole demonstrates the versatility of 3D printing in antenna fabrication.</abstract><pub>IEEE</pub><doi>10.1109/OJAP.2023.3265691</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3096-7274</orcidid><orcidid>https://orcid.org/0000-0002-0022-785X</orcidid><orcidid>https://orcid.org/0000-0002-2351-0535</orcidid><orcidid>https://orcid.org/0000-0001-9945-5125</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2637-6431 |
ispartof | IEEE Open Journal of Antennas and Propagation, 2023-01, Vol.4, p.1-1 |
issn | 2637-6431 2637-6431 |
language | eng |
recordid | cdi_crossref_primary_10_1109_OJAP_2023_3265691 |
source | DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | 3D printed antenna Antennas Casting conical horn disk loaded monopole Fabrication metal casting Metals resin casting Resins Three-dimensional displays Three-dimensional printing |
title | Indirect Applications of Additive Manufacturing for Antennas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indirect%20Applications%20of%20Additive%20Manufacturing%20for%20Antennas&rft.jtitle=IEEE%20Open%20Journal%20of%20Antennas%20and%20Propagation&rft.au=Lundquist,%20Jonathan%20D.&rft.date=2023-01-01&rft.volume=4&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2637-6431&rft.eissn=2637-6431&rft.coden=IJSTK4&rft_id=info:doi/10.1109/OJAP.2023.3265691&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_ab55fbaa7c61495bbf8453b61c7039fd%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10097881&rft_doaj_id=oai_doaj_org_article_ab55fbaa7c61495bbf8453b61c7039fd&rfr_iscdi=true |