AI Testing Framework for Next-G O-RAN Networks: Requirements, Design, and Research Opportunities
Openness and intelligence are two enabling features to be introduced in next generation wireless networks, for example, Beyond 5G and 6G, to support service heterogeneity, open hardware, optimal resource utilization, and on-demand service deployment. The open radio access network (O-RAN) is a promis...
Gespeichert in:
Veröffentlicht in: | IEEE wireless communications 2023-02, Vol.30 (1), p.70-77 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | 1 |
container_start_page | 70 |
container_title | IEEE wireless communications |
container_volume | 30 |
creator | Tang, Bo Shah, Vijay K. Marojevic, Vuk Reed, Jeffrey H. |
description | Openness and intelligence are two enabling features to be introduced in next generation wireless networks, for example, Beyond 5G and 6G, to support service heterogeneity, open hardware, optimal resource utilization, and on-demand service deployment. The open radio access network (O-RAN) is a promising RAN architecture to achieve both openness and intelligence through virtualized network elements and well-defined interfaces. While deploying artificial intelligence (AI) models is becoming easier in O-RAN, one significant challenge that has been long neglected is the comprehensive testing of their performance in realistic environments. This article presents a general automated, distributed and AI-enabled testing framework to test AI models deployed in O-RAN in terms of their decision-making perfor-mance, vulnerability and security. This framework adopts a master-actor architecture to manage a number of end devices for distributed testing. More importantly, it leverages AI to automatically and intelligently explore the decision space of AI models in O-RAN. Both software simulation testing and software-defined radio hardware testing are supported, enabling rapid proof of concept research and experimental research on wireless research platforms. |
doi_str_mv | 10.1109/MWC.001.2200213 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MWC_001_2200213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10077111</ieee_id><sourcerecordid>2789480858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-ebd90932609a556ff0f1c55a2ef3e661fc5b15a04882d468237badd5e3007c693</originalsourceid><addsrcrecordid>eNpNkEFPwkAQhRujiYievXjYxCuF2d3uduuNoCAJQkIwHtelnWJR2rLbRv33LoGDp5nJe28m8wXBLYU-pZAMXt5GfQDaZwyAUX4WdKgQKgSp4vNDz2VImYougyvntt4YSyE7wftwSlbomqLckLE1O_yu7CfJK0vm-NOEE7IIl8O5H5qD4B7IEvdtYXGHZeN65BFdsSl7xJSZVxwam36QRV1XtmnLoinQXQcXuflyeHOq3eB1_LQaPYezxWQ6Gs7ClCXQhLjOEkg4k5AYIWSeQ05TIQzDnKOUNE_FmgoDkVIsi6RiPF6bLBPIAeJUJrwb3B_31rbat_4jva1aW_qTmsUqiRQoobxrcHSltnLOYq5rW-yM_dUU9AGj9hi1p6NPGH3i7pgoEPGfG-KYUsr_ADeLbN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789480858</pqid></control><display><type>article</type><title>AI Testing Framework for Next-G O-RAN Networks: Requirements, Design, and Research Opportunities</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Bo ; Shah, Vijay K. ; Marojevic, Vuk ; Reed, Jeffrey H.</creator><creatorcontrib>Tang, Bo ; Shah, Vijay K. ; Marojevic, Vuk ; Reed, Jeffrey H.</creatorcontrib><description>Openness and intelligence are two enabling features to be introduced in next generation wireless networks, for example, Beyond 5G and 6G, to support service heterogeneity, open hardware, optimal resource utilization, and on-demand service deployment. The open radio access network (O-RAN) is a promising RAN architecture to achieve both openness and intelligence through virtualized network elements and well-defined interfaces. While deploying artificial intelligence (AI) models is becoming easier in O-RAN, one significant challenge that has been long neglected is the comprehensive testing of their performance in realistic environments. This article presents a general automated, distributed and AI-enabled testing framework to test AI models deployed in O-RAN in terms of their decision-making perfor-mance, vulnerability and security. This framework adopts a master-actor architecture to manage a number of end devices for distributed testing. More importantly, it leverages AI to automatically and intelligently explore the decision space of AI models in O-RAN. Both software simulation testing and software-defined radio hardware testing are supported, enabling rapid proof of concept research and experimental research on wireless research platforms.</description><identifier>ISSN: 1536-1284</identifier><identifier>EISSN: 1558-0687</identifier><identifier>DOI: 10.1109/MWC.001.2200213</identifier><identifier>CODEN: IWCEAS</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Computer architecture ; Decision making ; Hardware ; Heterogeneity ; Resource utilization ; Security ; Software radio ; Space exploration ; Training data ; Wireless networks</subject><ispartof>IEEE wireless communications, 2023-02, Vol.30 (1), p.70-77</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-ebd90932609a556ff0f1c55a2ef3e661fc5b15a04882d468237badd5e3007c693</citedby><cites>FETCH-LOGICAL-c290t-ebd90932609a556ff0f1c55a2ef3e661fc5b15a04882d468237badd5e3007c693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10077111$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10077111$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Bo</creatorcontrib><creatorcontrib>Shah, Vijay K.</creatorcontrib><creatorcontrib>Marojevic, Vuk</creatorcontrib><creatorcontrib>Reed, Jeffrey H.</creatorcontrib><title>AI Testing Framework for Next-G O-RAN Networks: Requirements, Design, and Research Opportunities</title><title>IEEE wireless communications</title><addtitle>WC-M</addtitle><description>Openness and intelligence are two enabling features to be introduced in next generation wireless networks, for example, Beyond 5G and 6G, to support service heterogeneity, open hardware, optimal resource utilization, and on-demand service deployment. The open radio access network (O-RAN) is a promising RAN architecture to achieve both openness and intelligence through virtualized network elements and well-defined interfaces. While deploying artificial intelligence (AI) models is becoming easier in O-RAN, one significant challenge that has been long neglected is the comprehensive testing of their performance in realistic environments. This article presents a general automated, distributed and AI-enabled testing framework to test AI models deployed in O-RAN in terms of their decision-making perfor-mance, vulnerability and security. This framework adopts a master-actor architecture to manage a number of end devices for distributed testing. More importantly, it leverages AI to automatically and intelligently explore the decision space of AI models in O-RAN. Both software simulation testing and software-defined radio hardware testing are supported, enabling rapid proof of concept research and experimental research on wireless research platforms.</description><subject>Artificial intelligence</subject><subject>Computer architecture</subject><subject>Decision making</subject><subject>Hardware</subject><subject>Heterogeneity</subject><subject>Resource utilization</subject><subject>Security</subject><subject>Software radio</subject><subject>Space exploration</subject><subject>Training data</subject><subject>Wireless networks</subject><issn>1536-1284</issn><issn>1558-0687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwkAQhRujiYievXjYxCuF2d3uduuNoCAJQkIwHtelnWJR2rLbRv33LoGDp5nJe28m8wXBLYU-pZAMXt5GfQDaZwyAUX4WdKgQKgSp4vNDz2VImYougyvntt4YSyE7wftwSlbomqLckLE1O_yu7CfJK0vm-NOEE7IIl8O5H5qD4B7IEvdtYXGHZeN65BFdsSl7xJSZVxwam36QRV1XtmnLoinQXQcXuflyeHOq3eB1_LQaPYezxWQ6Gs7ClCXQhLjOEkg4k5AYIWSeQ05TIQzDnKOUNE_FmgoDkVIsi6RiPF6bLBPIAeJUJrwb3B_31rbat_4jva1aW_qTmsUqiRQoobxrcHSltnLOYq5rW-yM_dUU9AGj9hi1p6NPGH3i7pgoEPGfG-KYUsr_ADeLbN8</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Tang, Bo</creator><creator>Shah, Vijay K.</creator><creator>Marojevic, Vuk</creator><creator>Reed, Jeffrey H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>202302</creationdate><title>AI Testing Framework for Next-G O-RAN Networks: Requirements, Design, and Research Opportunities</title><author>Tang, Bo ; Shah, Vijay K. ; Marojevic, Vuk ; Reed, Jeffrey H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-ebd90932609a556ff0f1c55a2ef3e661fc5b15a04882d468237badd5e3007c693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Computer architecture</topic><topic>Decision making</topic><topic>Hardware</topic><topic>Heterogeneity</topic><topic>Resource utilization</topic><topic>Security</topic><topic>Software radio</topic><topic>Space exploration</topic><topic>Training data</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Bo</creatorcontrib><creatorcontrib>Shah, Vijay K.</creatorcontrib><creatorcontrib>Marojevic, Vuk</creatorcontrib><creatorcontrib>Reed, Jeffrey H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Bo</au><au>Shah, Vijay K.</au><au>Marojevic, Vuk</au><au>Reed, Jeffrey H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI Testing Framework for Next-G O-RAN Networks: Requirements, Design, and Research Opportunities</atitle><jtitle>IEEE wireless communications</jtitle><stitle>WC-M</stitle><date>2023-02</date><risdate>2023</risdate><volume>30</volume><issue>1</issue><spage>70</spage><epage>77</epage><pages>70-77</pages><issn>1536-1284</issn><eissn>1558-0687</eissn><coden>IWCEAS</coden><abstract>Openness and intelligence are two enabling features to be introduced in next generation wireless networks, for example, Beyond 5G and 6G, to support service heterogeneity, open hardware, optimal resource utilization, and on-demand service deployment. The open radio access network (O-RAN) is a promising RAN architecture to achieve both openness and intelligence through virtualized network elements and well-defined interfaces. While deploying artificial intelligence (AI) models is becoming easier in O-RAN, one significant challenge that has been long neglected is the comprehensive testing of their performance in realistic environments. This article presents a general automated, distributed and AI-enabled testing framework to test AI models deployed in O-RAN in terms of their decision-making perfor-mance, vulnerability and security. This framework adopts a master-actor architecture to manage a number of end devices for distributed testing. More importantly, it leverages AI to automatically and intelligently explore the decision space of AI models in O-RAN. Both software simulation testing and software-defined radio hardware testing are supported, enabling rapid proof of concept research and experimental research on wireless research platforms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MWC.001.2200213</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1284 |
ispartof | IEEE wireless communications, 2023-02, Vol.30 (1), p.70-77 |
issn | 1536-1284 1558-0687 |
language | eng |
recordid | cdi_crossref_primary_10_1109_MWC_001_2200213 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Computer architecture Decision making Hardware Heterogeneity Resource utilization Security Software radio Space exploration Training data Wireless networks |
title | AI Testing Framework for Next-G O-RAN Networks: Requirements, Design, and Research Opportunities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI%20Testing%20Framework%20for%20Next-G%20O-RAN%20Networks:%20Requirements,%20Design,%20and%20Research%20Opportunities&rft.jtitle=IEEE%20wireless%20communications&rft.au=Tang,%20Bo&rft.date=2023-02&rft.volume=30&rft.issue=1&rft.spage=70&rft.epage=77&rft.pages=70-77&rft.issn=1536-1284&rft.eissn=1558-0687&rft.coden=IWCEAS&rft_id=info:doi/10.1109/MWC.001.2200213&rft_dat=%3Cproquest_RIE%3E2789480858%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789480858&rft_id=info:pmid/&rft_ieee_id=10077111&rfr_iscdi=true |