AI Testing Framework for Next-G O-RAN Networks: Requirements, Design, and Research Opportunities

Openness and intelligence are two enabling features to be introduced in next generation wireless networks, for example, Beyond 5G and 6G, to support service heterogeneity, open hardware, optimal resource utilization, and on-demand service deployment. The open radio access network (O-RAN) is a promis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications 2023-02, Vol.30 (1), p.70-77
Hauptverfasser: Tang, Bo, Shah, Vijay K., Marojevic, Vuk, Reed, Jeffrey H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue 1
container_start_page 70
container_title IEEE wireless communications
container_volume 30
creator Tang, Bo
Shah, Vijay K.
Marojevic, Vuk
Reed, Jeffrey H.
description Openness and intelligence are two enabling features to be introduced in next generation wireless networks, for example, Beyond 5G and 6G, to support service heterogeneity, open hardware, optimal resource utilization, and on-demand service deployment. The open radio access network (O-RAN) is a promising RAN architecture to achieve both openness and intelligence through virtualized network elements and well-defined interfaces. While deploying artificial intelligence (AI) models is becoming easier in O-RAN, one significant challenge that has been long neglected is the comprehensive testing of their performance in realistic environments. This article presents a general automated, distributed and AI-enabled testing framework to test AI models deployed in O-RAN in terms of their decision-making perfor-mance, vulnerability and security. This framework adopts a master-actor architecture to manage a number of end devices for distributed testing. More importantly, it leverages AI to automatically and intelligently explore the decision space of AI models in O-RAN. Both software simulation testing and software-defined radio hardware testing are supported, enabling rapid proof of concept research and experimental research on wireless research platforms.
doi_str_mv 10.1109/MWC.001.2200213
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MWC_001_2200213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10077111</ieee_id><sourcerecordid>2789480858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-ebd90932609a556ff0f1c55a2ef3e661fc5b15a04882d468237badd5e3007c693</originalsourceid><addsrcrecordid>eNpNkEFPwkAQhRujiYievXjYxCuF2d3uduuNoCAJQkIwHtelnWJR2rLbRv33LoGDp5nJe28m8wXBLYU-pZAMXt5GfQDaZwyAUX4WdKgQKgSp4vNDz2VImYougyvntt4YSyE7wftwSlbomqLckLE1O_yu7CfJK0vm-NOEE7IIl8O5H5qD4B7IEvdtYXGHZeN65BFdsSl7xJSZVxwam36QRV1XtmnLoinQXQcXuflyeHOq3eB1_LQaPYezxWQ6Gs7ClCXQhLjOEkg4k5AYIWSeQ05TIQzDnKOUNE_FmgoDkVIsi6RiPF6bLBPIAeJUJrwb3B_31rbat_4jva1aW_qTmsUqiRQoobxrcHSltnLOYq5rW-yM_dUU9AGj9hi1p6NPGH3i7pgoEPGfG-KYUsr_ADeLbN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789480858</pqid></control><display><type>article</type><title>AI Testing Framework for Next-G O-RAN Networks: Requirements, Design, and Research Opportunities</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Bo ; Shah, Vijay K. ; Marojevic, Vuk ; Reed, Jeffrey H.</creator><creatorcontrib>Tang, Bo ; Shah, Vijay K. ; Marojevic, Vuk ; Reed, Jeffrey H.</creatorcontrib><description>Openness and intelligence are two enabling features to be introduced in next generation wireless networks, for example, Beyond 5G and 6G, to support service heterogeneity, open hardware, optimal resource utilization, and on-demand service deployment. The open radio access network (O-RAN) is a promising RAN architecture to achieve both openness and intelligence through virtualized network elements and well-defined interfaces. While deploying artificial intelligence (AI) models is becoming easier in O-RAN, one significant challenge that has been long neglected is the comprehensive testing of their performance in realistic environments. This article presents a general automated, distributed and AI-enabled testing framework to test AI models deployed in O-RAN in terms of their decision-making perfor-mance, vulnerability and security. This framework adopts a master-actor architecture to manage a number of end devices for distributed testing. More importantly, it leverages AI to automatically and intelligently explore the decision space of AI models in O-RAN. Both software simulation testing and software-defined radio hardware testing are supported, enabling rapid proof of concept research and experimental research on wireless research platforms.</description><identifier>ISSN: 1536-1284</identifier><identifier>EISSN: 1558-0687</identifier><identifier>DOI: 10.1109/MWC.001.2200213</identifier><identifier>CODEN: IWCEAS</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Computer architecture ; Decision making ; Hardware ; Heterogeneity ; Resource utilization ; Security ; Software radio ; Space exploration ; Training data ; Wireless networks</subject><ispartof>IEEE wireless communications, 2023-02, Vol.30 (1), p.70-77</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-ebd90932609a556ff0f1c55a2ef3e661fc5b15a04882d468237badd5e3007c693</citedby><cites>FETCH-LOGICAL-c290t-ebd90932609a556ff0f1c55a2ef3e661fc5b15a04882d468237badd5e3007c693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10077111$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10077111$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Bo</creatorcontrib><creatorcontrib>Shah, Vijay K.</creatorcontrib><creatorcontrib>Marojevic, Vuk</creatorcontrib><creatorcontrib>Reed, Jeffrey H.</creatorcontrib><title>AI Testing Framework for Next-G O-RAN Networks: Requirements, Design, and Research Opportunities</title><title>IEEE wireless communications</title><addtitle>WC-M</addtitle><description>Openness and intelligence are two enabling features to be introduced in next generation wireless networks, for example, Beyond 5G and 6G, to support service heterogeneity, open hardware, optimal resource utilization, and on-demand service deployment. The open radio access network (O-RAN) is a promising RAN architecture to achieve both openness and intelligence through virtualized network elements and well-defined interfaces. While deploying artificial intelligence (AI) models is becoming easier in O-RAN, one significant challenge that has been long neglected is the comprehensive testing of their performance in realistic environments. This article presents a general automated, distributed and AI-enabled testing framework to test AI models deployed in O-RAN in terms of their decision-making perfor-mance, vulnerability and security. This framework adopts a master-actor architecture to manage a number of end devices for distributed testing. More importantly, it leverages AI to automatically and intelligently explore the decision space of AI models in O-RAN. Both software simulation testing and software-defined radio hardware testing are supported, enabling rapid proof of concept research and experimental research on wireless research platforms.</description><subject>Artificial intelligence</subject><subject>Computer architecture</subject><subject>Decision making</subject><subject>Hardware</subject><subject>Heterogeneity</subject><subject>Resource utilization</subject><subject>Security</subject><subject>Software radio</subject><subject>Space exploration</subject><subject>Training data</subject><subject>Wireless networks</subject><issn>1536-1284</issn><issn>1558-0687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwkAQhRujiYievXjYxCuF2d3uduuNoCAJQkIwHtelnWJR2rLbRv33LoGDp5nJe28m8wXBLYU-pZAMXt5GfQDaZwyAUX4WdKgQKgSp4vNDz2VImYougyvntt4YSyE7wftwSlbomqLckLE1O_yu7CfJK0vm-NOEE7IIl8O5H5qD4B7IEvdtYXGHZeN65BFdsSl7xJSZVxwam36QRV1XtmnLoinQXQcXuflyeHOq3eB1_LQaPYezxWQ6Gs7ClCXQhLjOEkg4k5AYIWSeQ05TIQzDnKOUNE_FmgoDkVIsi6RiPF6bLBPIAeJUJrwb3B_31rbat_4jva1aW_qTmsUqiRQoobxrcHSltnLOYq5rW-yM_dUU9AGj9hi1p6NPGH3i7pgoEPGfG-KYUsr_ADeLbN8</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Tang, Bo</creator><creator>Shah, Vijay K.</creator><creator>Marojevic, Vuk</creator><creator>Reed, Jeffrey H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>202302</creationdate><title>AI Testing Framework for Next-G O-RAN Networks: Requirements, Design, and Research Opportunities</title><author>Tang, Bo ; Shah, Vijay K. ; Marojevic, Vuk ; Reed, Jeffrey H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-ebd90932609a556ff0f1c55a2ef3e661fc5b15a04882d468237badd5e3007c693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Computer architecture</topic><topic>Decision making</topic><topic>Hardware</topic><topic>Heterogeneity</topic><topic>Resource utilization</topic><topic>Security</topic><topic>Software radio</topic><topic>Space exploration</topic><topic>Training data</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Bo</creatorcontrib><creatorcontrib>Shah, Vijay K.</creatorcontrib><creatorcontrib>Marojevic, Vuk</creatorcontrib><creatorcontrib>Reed, Jeffrey H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Bo</au><au>Shah, Vijay K.</au><au>Marojevic, Vuk</au><au>Reed, Jeffrey H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI Testing Framework for Next-G O-RAN Networks: Requirements, Design, and Research Opportunities</atitle><jtitle>IEEE wireless communications</jtitle><stitle>WC-M</stitle><date>2023-02</date><risdate>2023</risdate><volume>30</volume><issue>1</issue><spage>70</spage><epage>77</epage><pages>70-77</pages><issn>1536-1284</issn><eissn>1558-0687</eissn><coden>IWCEAS</coden><abstract>Openness and intelligence are two enabling features to be introduced in next generation wireless networks, for example, Beyond 5G and 6G, to support service heterogeneity, open hardware, optimal resource utilization, and on-demand service deployment. The open radio access network (O-RAN) is a promising RAN architecture to achieve both openness and intelligence through virtualized network elements and well-defined interfaces. While deploying artificial intelligence (AI) models is becoming easier in O-RAN, one significant challenge that has been long neglected is the comprehensive testing of their performance in realistic environments. This article presents a general automated, distributed and AI-enabled testing framework to test AI models deployed in O-RAN in terms of their decision-making perfor-mance, vulnerability and security. This framework adopts a master-actor architecture to manage a number of end devices for distributed testing. More importantly, it leverages AI to automatically and intelligently explore the decision space of AI models in O-RAN. Both software simulation testing and software-defined radio hardware testing are supported, enabling rapid proof of concept research and experimental research on wireless research platforms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MWC.001.2200213</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1284
ispartof IEEE wireless communications, 2023-02, Vol.30 (1), p.70-77
issn 1536-1284
1558-0687
language eng
recordid cdi_crossref_primary_10_1109_MWC_001_2200213
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Computer architecture
Decision making
Hardware
Heterogeneity
Resource utilization
Security
Software radio
Space exploration
Training data
Wireless networks
title AI Testing Framework for Next-G O-RAN Networks: Requirements, Design, and Research Opportunities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI%20Testing%20Framework%20for%20Next-G%20O-RAN%20Networks:%20Requirements,%20Design,%20and%20Research%20Opportunities&rft.jtitle=IEEE%20wireless%20communications&rft.au=Tang,%20Bo&rft.date=2023-02&rft.volume=30&rft.issue=1&rft.spage=70&rft.epage=77&rft.pages=70-77&rft.issn=1536-1284&rft.eissn=1558-0687&rft.coden=IWCEAS&rft_id=info:doi/10.1109/MWC.001.2200213&rft_dat=%3Cproquest_RIE%3E2789480858%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789480858&rft_id=info:pmid/&rft_ieee_id=10077111&rfr_iscdi=true