Semantic Communication for Edge Intelligence Enabled Autonomous Driving System

Expected to provide higher transportation efficiency and security, autonomous driving has attracted substantial attentions from both industry and academia. Meanwhile, the emergence of edge intelligence has further introduced significant advancements to this field. However, the crucial demands of ult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE network 2024-09, p.1-1
Hauptverfasser: Feng, Yunqi, Shen, Hesheng, Shan, Zhendong, Yang, Qianqian, Shi, Xiufang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE network
container_volume
creator Feng, Yunqi
Shen, Hesheng
Shan, Zhendong
Yang, Qianqian
Shi, Xiufang
description Expected to provide higher transportation efficiency and security, autonomous driving has attracted substantial attentions from both industry and academia. Meanwhile, the emergence of edge intelligence has further introduced significant advancements to this field. However, the crucial demands of ultra-reliable and low-latency communications (URLLC) among the vehicles and edge servers have hindered the development of autonomous driving. In this article, we provide a brief overview of edge intelligence enabled autonomous driving system and current vehicle-to-everything (V2X) technologies. Moreover, challenges associated with massive data transmission in autonomous driving are highlighted from three perspectives: multi-modal data transmission and fusion, multi-user collaboration and connection, and multi-task training and execution. To cope with these challenges, we propose to incorporate semantic communication into autonomous driving to achieve highly efficient and task-oriented data transmission. Unlike traditional communications, semantic communication extracts task-relevant semantic feature from multi-sensory data. Specifically, a unified multi-user semantic communication system for transmitting multi-modal data and performing multi-task execution is designed for collaborative data transmission and decision making in autonomous driving. Simulation results demonstrate that the proposed system can significantly reduce data transmission volume without compromising task performance, as evidenced by the realization of a cooperative multi-vehicle target classification and detection task.
doi_str_mv 10.1109/MNET.2024.3468328
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MNET_2024_3468328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10695151</ieee_id><sourcerecordid>10_1109_MNET_2024_3468328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1068-23e1cd3e5b12f99c2b258851c07d33b849734de4424ee6988db6a6b85c92d47a3</originalsourceid><addsrcrecordid>eNpN0L1OwzAcBHALgUQpPAASg18gxd-xx6oEqFTK0CKxRY79T2WU2ChOkfr2ULUD0y13N_wQuqdkRikxj2_rajtjhIkZF0pzpi_QhEqpCyrV5yWaEG1IoYkQ1-gm5y9CqJCcTdB6A72NY3B4kfp-H4OzY0gRt2nAld8BXsYRui7sIDrAVbRNBx7P92OKqU_7jJ-G8BPiDm8OeYT-Fl21tstwd84p-niutovXYvX-slzMV4WjROmCcaDOc5ANZa0xjjVMai2pI6XnvNHClFx4EIIJAGW09o2yqtHSGeZFafkU0dOvG1LOA7T19xB6OxxqSuojSH0EqY8g9Rnkb_Nw2gQA-NdXRlJJ-S-zol0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semantic Communication for Edge Intelligence Enabled Autonomous Driving System</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Yunqi ; Shen, Hesheng ; Shan, Zhendong ; Yang, Qianqian ; Shi, Xiufang</creator><creatorcontrib>Feng, Yunqi ; Shen, Hesheng ; Shan, Zhendong ; Yang, Qianqian ; Shi, Xiufang</creatorcontrib><description>Expected to provide higher transportation efficiency and security, autonomous driving has attracted substantial attentions from both industry and academia. Meanwhile, the emergence of edge intelligence has further introduced significant advancements to this field. However, the crucial demands of ultra-reliable and low-latency communications (URLLC) among the vehicles and edge servers have hindered the development of autonomous driving. In this article, we provide a brief overview of edge intelligence enabled autonomous driving system and current vehicle-to-everything (V2X) technologies. Moreover, challenges associated with massive data transmission in autonomous driving are highlighted from three perspectives: multi-modal data transmission and fusion, multi-user collaboration and connection, and multi-task training and execution. To cope with these challenges, we propose to incorporate semantic communication into autonomous driving to achieve highly efficient and task-oriented data transmission. Unlike traditional communications, semantic communication extracts task-relevant semantic feature from multi-sensory data. Specifically, a unified multi-user semantic communication system for transmitting multi-modal data and performing multi-task execution is designed for collaborative data transmission and decision making in autonomous driving. Simulation results demonstrate that the proposed system can significantly reduce data transmission volume without compromising task performance, as evidenced by the realization of a cooperative multi-vehicle target classification and detection task.</description><identifier>ISSN: 0890-8044</identifier><identifier>EISSN: 1558-156X</identifier><identifier>DOI: 10.1109/MNET.2024.3468328</identifier><identifier>CODEN: IENEET</identifier><language>eng</language><publisher>IEEE</publisher><subject>Autonomous driving ; Autonomous vehicles ; Collaboration ; Data communication ; edge intelligence ; Feature extraction ; multi-modal data ; multi-task execution ; multi-user collaboration ; semantic communication ; Semantics ; Servers ; Vehicle-to-everything</subject><ispartof>IEEE network, 2024-09, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4879-3049 ; 0000-0003-4747-9410 ; 0000-0002-2945-8344 ; 0009-0002-7951-7784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10695151$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10695151$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Yunqi</creatorcontrib><creatorcontrib>Shen, Hesheng</creatorcontrib><creatorcontrib>Shan, Zhendong</creatorcontrib><creatorcontrib>Yang, Qianqian</creatorcontrib><creatorcontrib>Shi, Xiufang</creatorcontrib><title>Semantic Communication for Edge Intelligence Enabled Autonomous Driving System</title><title>IEEE network</title><addtitle>NET-M</addtitle><description>Expected to provide higher transportation efficiency and security, autonomous driving has attracted substantial attentions from both industry and academia. Meanwhile, the emergence of edge intelligence has further introduced significant advancements to this field. However, the crucial demands of ultra-reliable and low-latency communications (URLLC) among the vehicles and edge servers have hindered the development of autonomous driving. In this article, we provide a brief overview of edge intelligence enabled autonomous driving system and current vehicle-to-everything (V2X) technologies. Moreover, challenges associated with massive data transmission in autonomous driving are highlighted from three perspectives: multi-modal data transmission and fusion, multi-user collaboration and connection, and multi-task training and execution. To cope with these challenges, we propose to incorporate semantic communication into autonomous driving to achieve highly efficient and task-oriented data transmission. Unlike traditional communications, semantic communication extracts task-relevant semantic feature from multi-sensory data. Specifically, a unified multi-user semantic communication system for transmitting multi-modal data and performing multi-task execution is designed for collaborative data transmission and decision making in autonomous driving. Simulation results demonstrate that the proposed system can significantly reduce data transmission volume without compromising task performance, as evidenced by the realization of a cooperative multi-vehicle target classification and detection task.</description><subject>Autonomous driving</subject><subject>Autonomous vehicles</subject><subject>Collaboration</subject><subject>Data communication</subject><subject>edge intelligence</subject><subject>Feature extraction</subject><subject>multi-modal data</subject><subject>multi-task execution</subject><subject>multi-user collaboration</subject><subject>semantic communication</subject><subject>Semantics</subject><subject>Servers</subject><subject>Vehicle-to-everything</subject><issn>0890-8044</issn><issn>1558-156X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpN0L1OwzAcBHALgUQpPAASg18gxd-xx6oEqFTK0CKxRY79T2WU2ChOkfr2ULUD0y13N_wQuqdkRikxj2_rajtjhIkZF0pzpi_QhEqpCyrV5yWaEG1IoYkQ1-gm5y9CqJCcTdB6A72NY3B4kfp-H4OzY0gRt2nAld8BXsYRui7sIDrAVbRNBx7P92OKqU_7jJ-G8BPiDm8OeYT-Fl21tstwd84p-niutovXYvX-slzMV4WjROmCcaDOc5ANZa0xjjVMai2pI6XnvNHClFx4EIIJAGW09o2yqtHSGeZFafkU0dOvG1LOA7T19xB6OxxqSuojSH0EqY8g9Rnkb_Nw2gQA-NdXRlJJ-S-zol0E</recordid><startdate>20240925</startdate><enddate>20240925</enddate><creator>Feng, Yunqi</creator><creator>Shen, Hesheng</creator><creator>Shan, Zhendong</creator><creator>Yang, Qianqian</creator><creator>Shi, Xiufang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4879-3049</orcidid><orcidid>https://orcid.org/0000-0003-4747-9410</orcidid><orcidid>https://orcid.org/0000-0002-2945-8344</orcidid><orcidid>https://orcid.org/0009-0002-7951-7784</orcidid></search><sort><creationdate>20240925</creationdate><title>Semantic Communication for Edge Intelligence Enabled Autonomous Driving System</title><author>Feng, Yunqi ; Shen, Hesheng ; Shan, Zhendong ; Yang, Qianqian ; Shi, Xiufang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1068-23e1cd3e5b12f99c2b258851c07d33b849734de4424ee6988db6a6b85c92d47a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous driving</topic><topic>Autonomous vehicles</topic><topic>Collaboration</topic><topic>Data communication</topic><topic>edge intelligence</topic><topic>Feature extraction</topic><topic>multi-modal data</topic><topic>multi-task execution</topic><topic>multi-user collaboration</topic><topic>semantic communication</topic><topic>Semantics</topic><topic>Servers</topic><topic>Vehicle-to-everything</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yunqi</creatorcontrib><creatorcontrib>Shen, Hesheng</creatorcontrib><creatorcontrib>Shan, Zhendong</creatorcontrib><creatorcontrib>Yang, Qianqian</creatorcontrib><creatorcontrib>Shi, Xiufang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE network</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Yunqi</au><au>Shen, Hesheng</au><au>Shan, Zhendong</au><au>Yang, Qianqian</au><au>Shi, Xiufang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic Communication for Edge Intelligence Enabled Autonomous Driving System</atitle><jtitle>IEEE network</jtitle><stitle>NET-M</stitle><date>2024-09-25</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0890-8044</issn><eissn>1558-156X</eissn><coden>IENEET</coden><abstract>Expected to provide higher transportation efficiency and security, autonomous driving has attracted substantial attentions from both industry and academia. Meanwhile, the emergence of edge intelligence has further introduced significant advancements to this field. However, the crucial demands of ultra-reliable and low-latency communications (URLLC) among the vehicles and edge servers have hindered the development of autonomous driving. In this article, we provide a brief overview of edge intelligence enabled autonomous driving system and current vehicle-to-everything (V2X) technologies. Moreover, challenges associated with massive data transmission in autonomous driving are highlighted from three perspectives: multi-modal data transmission and fusion, multi-user collaboration and connection, and multi-task training and execution. To cope with these challenges, we propose to incorporate semantic communication into autonomous driving to achieve highly efficient and task-oriented data transmission. Unlike traditional communications, semantic communication extracts task-relevant semantic feature from multi-sensory data. Specifically, a unified multi-user semantic communication system for transmitting multi-modal data and performing multi-task execution is designed for collaborative data transmission and decision making in autonomous driving. Simulation results demonstrate that the proposed system can significantly reduce data transmission volume without compromising task performance, as evidenced by the realization of a cooperative multi-vehicle target classification and detection task.</abstract><pub>IEEE</pub><doi>10.1109/MNET.2024.3468328</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4879-3049</orcidid><orcidid>https://orcid.org/0000-0003-4747-9410</orcidid><orcidid>https://orcid.org/0000-0002-2945-8344</orcidid><orcidid>https://orcid.org/0009-0002-7951-7784</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0890-8044
ispartof IEEE network, 2024-09, p.1-1
issn 0890-8044
1558-156X
language eng
recordid cdi_crossref_primary_10_1109_MNET_2024_3468328
source IEEE Electronic Library (IEL)
subjects Autonomous driving
Autonomous vehicles
Collaboration
Data communication
edge intelligence
Feature extraction
multi-modal data
multi-task execution
multi-user collaboration
semantic communication
Semantics
Servers
Vehicle-to-everything
title Semantic Communication for Edge Intelligence Enabled Autonomous Driving System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20Communication%20for%20Edge%20Intelligence%20Enabled%20Autonomous%20Driving%20System&rft.jtitle=IEEE%20network&rft.au=Feng,%20Yunqi&rft.date=2024-09-25&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0890-8044&rft.eissn=1558-156X&rft.coden=IENEET&rft_id=info:doi/10.1109/MNET.2024.3468328&rft_dat=%3Ccrossref_RIE%3E10_1109_MNET_2024_3468328%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10695151&rfr_iscdi=true