Task-Oriented Wireless Communications for Collaborative Perception in Intelligent Unmanned Systems

Collaborative Perception (CP) has shown great potential to achieve more holistic and reliable environmental perception in intelligent unmanned systems (IUSs). However, implementing CP still faces key challenges due to the characteristics of the CP task and the dynamics of wireless channels. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE network 2024-11, Vol.38 (6), p.21-28
Hauptverfasser: Zhou, Sheng, Jia, Yukuan, Mao, Ruiqing, Nan, Zhaojun, Sun, Yuxuan, Niu, Zhisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 6
container_start_page 21
container_title IEEE network
container_volume 38
creator Zhou, Sheng
Jia, Yukuan
Mao, Ruiqing
Nan, Zhaojun
Sun, Yuxuan
Niu, Zhisheng
description Collaborative Perception (CP) has shown great potential to achieve more holistic and reliable environmental perception in intelligent unmanned systems (IUSs). However, implementing CP still faces key challenges due to the characteristics of the CP task and the dynamics of wireless channels. In this article, a task-oriented wireless communication framework is proposed to jointly optimize the communication scheme and the CP procedure. We first propose channel-adaptive compression and robust fusion approaches to extract and exploit the most valuable semantic information under wireless communication constraints. We then propose a task-oriented distributed scheduling algorithm to identify the best collaborators for CP under dynamic environments. The main idea is learning while scheduling, where the collaboration utility is effectively learned with low computation and communication overhead. Case studies are carried out in connected autonomous driving scenarios to verify the proposed framework. Finally, we identify several future research directions.
doi_str_mv 10.1109/MNET.2024.3414144
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MNET_2024_3414144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10556778</ieee_id><sourcerecordid>10_1109_MNET_2024_3414144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-9ec5fbacaae83325449bb85d3545121148456ae880cc5bf21c013d0382a3842b3</originalsourceid><addsrcrecordid>eNpNkMtKAzEUhoMoWKsPILjIC0zNyaXNLKVULVQr2KK7IUnPSHQmU5JR6NuboS7kLA78t8VHyDWwCQArb5-eF5sJZ1xOhIR88oSMQCldgJq-n5IR0yUrNJPynFyk9MkYSCX4iNiNSV_FOnoMPe7om4_YYEp03rXtd_DO9L4LidZdzFLTGNvFLP0gfcHocD-41Ae6zO2m8R95hW5Da0LIY6-H1GObLslZbZqEV39_TLb3i838sVitH5bzu1XhQOq-KNGp2hpnDGohuJKytFarnVBSAYeckWqaPc2cU7bm4BiIHROaG6Elt2JM4LjrYpdSxLraR9-aeKiAVQOkaoBUDZCqP0i5c3PseET8l1dqOptp8Qtl92Ul</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Task-Oriented Wireless Communications for Collaborative Perception in Intelligent Unmanned Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Sheng ; Jia, Yukuan ; Mao, Ruiqing ; Nan, Zhaojun ; Sun, Yuxuan ; Niu, Zhisheng</creator><creatorcontrib>Zhou, Sheng ; Jia, Yukuan ; Mao, Ruiqing ; Nan, Zhaojun ; Sun, Yuxuan ; Niu, Zhisheng</creatorcontrib><description>Collaborative Perception (CP) has shown great potential to achieve more holistic and reliable environmental perception in intelligent unmanned systems (IUSs). However, implementing CP still faces key challenges due to the characteristics of the CP task and the dynamics of wireless channels. In this article, a task-oriented wireless communication framework is proposed to jointly optimize the communication scheme and the CP procedure. We first propose channel-adaptive compression and robust fusion approaches to extract and exploit the most valuable semantic information under wireless communication constraints. We then propose a task-oriented distributed scheduling algorithm to identify the best collaborators for CP under dynamic environments. The main idea is learning while scheduling, where the collaboration utility is effectively learned with low computation and communication overhead. Case studies are carried out in connected autonomous driving scenarios to verify the proposed framework. Finally, we identify several future research directions.</description><identifier>ISSN: 0890-8044</identifier><identifier>EISSN: 1558-156X</identifier><identifier>DOI: 10.1109/MNET.2024.3414144</identifier><identifier>CODEN: IENEET</identifier><language>eng</language><publisher>IEEE</publisher><subject>Autonomous systems ; Collaboration ; Data mining ; Distributed computing ; Feature extraction ; Federated learning ; Intelligent systems ; Robot sensing systems ; Scheduling ; Semantic communication ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE network, 2024-11, Vol.38 (6), p.21-28</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9720-6993 ; 0000-0003-1487-2179 ; 0000-0001-7169-3922 ; 0000-0002-2378-9433 ; 0000-0003-0420-2024 ; 0000-0003-0651-0071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10556778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10556778$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Sheng</creatorcontrib><creatorcontrib>Jia, Yukuan</creatorcontrib><creatorcontrib>Mao, Ruiqing</creatorcontrib><creatorcontrib>Nan, Zhaojun</creatorcontrib><creatorcontrib>Sun, Yuxuan</creatorcontrib><creatorcontrib>Niu, Zhisheng</creatorcontrib><title>Task-Oriented Wireless Communications for Collaborative Perception in Intelligent Unmanned Systems</title><title>IEEE network</title><addtitle>NET-M</addtitle><description>Collaborative Perception (CP) has shown great potential to achieve more holistic and reliable environmental perception in intelligent unmanned systems (IUSs). However, implementing CP still faces key challenges due to the characteristics of the CP task and the dynamics of wireless channels. In this article, a task-oriented wireless communication framework is proposed to jointly optimize the communication scheme and the CP procedure. We first propose channel-adaptive compression and robust fusion approaches to extract and exploit the most valuable semantic information under wireless communication constraints. We then propose a task-oriented distributed scheduling algorithm to identify the best collaborators for CP under dynamic environments. The main idea is learning while scheduling, where the collaboration utility is effectively learned with low computation and communication overhead. Case studies are carried out in connected autonomous driving scenarios to verify the proposed framework. Finally, we identify several future research directions.</description><subject>Autonomous systems</subject><subject>Collaboration</subject><subject>Data mining</subject><subject>Distributed computing</subject><subject>Feature extraction</subject><subject>Federated learning</subject><subject>Intelligent systems</subject><subject>Robot sensing systems</subject><subject>Scheduling</subject><subject>Semantic communication</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>0890-8044</issn><issn>1558-156X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtKAzEUhoMoWKsPILjIC0zNyaXNLKVULVQr2KK7IUnPSHQmU5JR6NuboS7kLA78t8VHyDWwCQArb5-eF5sJZ1xOhIR88oSMQCldgJq-n5IR0yUrNJPynFyk9MkYSCX4iNiNSV_FOnoMPe7om4_YYEp03rXtd_DO9L4LidZdzFLTGNvFLP0gfcHocD-41Ae6zO2m8R95hW5Da0LIY6-H1GObLslZbZqEV39_TLb3i838sVitH5bzu1XhQOq-KNGp2hpnDGohuJKytFarnVBSAYeckWqaPc2cU7bm4BiIHROaG6Elt2JM4LjrYpdSxLraR9-aeKiAVQOkaoBUDZCqP0i5c3PseET8l1dqOptp8Qtl92Ul</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Zhou, Sheng</creator><creator>Jia, Yukuan</creator><creator>Mao, Ruiqing</creator><creator>Nan, Zhaojun</creator><creator>Sun, Yuxuan</creator><creator>Niu, Zhisheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9720-6993</orcidid><orcidid>https://orcid.org/0000-0003-1487-2179</orcidid><orcidid>https://orcid.org/0000-0001-7169-3922</orcidid><orcidid>https://orcid.org/0000-0002-2378-9433</orcidid><orcidid>https://orcid.org/0000-0003-0420-2024</orcidid><orcidid>https://orcid.org/0000-0003-0651-0071</orcidid></search><sort><creationdate>202411</creationdate><title>Task-Oriented Wireless Communications for Collaborative Perception in Intelligent Unmanned Systems</title><author>Zhou, Sheng ; Jia, Yukuan ; Mao, Ruiqing ; Nan, Zhaojun ; Sun, Yuxuan ; Niu, Zhisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-9ec5fbacaae83325449bb85d3545121148456ae880cc5bf21c013d0382a3842b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous systems</topic><topic>Collaboration</topic><topic>Data mining</topic><topic>Distributed computing</topic><topic>Feature extraction</topic><topic>Federated learning</topic><topic>Intelligent systems</topic><topic>Robot sensing systems</topic><topic>Scheduling</topic><topic>Semantic communication</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Sheng</creatorcontrib><creatorcontrib>Jia, Yukuan</creatorcontrib><creatorcontrib>Mao, Ruiqing</creatorcontrib><creatorcontrib>Nan, Zhaojun</creatorcontrib><creatorcontrib>Sun, Yuxuan</creatorcontrib><creatorcontrib>Niu, Zhisheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE network</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Sheng</au><au>Jia, Yukuan</au><au>Mao, Ruiqing</au><au>Nan, Zhaojun</au><au>Sun, Yuxuan</au><au>Niu, Zhisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task-Oriented Wireless Communications for Collaborative Perception in Intelligent Unmanned Systems</atitle><jtitle>IEEE network</jtitle><stitle>NET-M</stitle><date>2024-11</date><risdate>2024</risdate><volume>38</volume><issue>6</issue><spage>21</spage><epage>28</epage><pages>21-28</pages><issn>0890-8044</issn><eissn>1558-156X</eissn><coden>IENEET</coden><abstract>Collaborative Perception (CP) has shown great potential to achieve more holistic and reliable environmental perception in intelligent unmanned systems (IUSs). However, implementing CP still faces key challenges due to the characteristics of the CP task and the dynamics of wireless channels. In this article, a task-oriented wireless communication framework is proposed to jointly optimize the communication scheme and the CP procedure. We first propose channel-adaptive compression and robust fusion approaches to extract and exploit the most valuable semantic information under wireless communication constraints. We then propose a task-oriented distributed scheduling algorithm to identify the best collaborators for CP under dynamic environments. The main idea is learning while scheduling, where the collaboration utility is effectively learned with low computation and communication overhead. Case studies are carried out in connected autonomous driving scenarios to verify the proposed framework. Finally, we identify several future research directions.</abstract><pub>IEEE</pub><doi>10.1109/MNET.2024.3414144</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9720-6993</orcidid><orcidid>https://orcid.org/0000-0003-1487-2179</orcidid><orcidid>https://orcid.org/0000-0001-7169-3922</orcidid><orcidid>https://orcid.org/0000-0002-2378-9433</orcidid><orcidid>https://orcid.org/0000-0003-0420-2024</orcidid><orcidid>https://orcid.org/0000-0003-0651-0071</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0890-8044
ispartof IEEE network, 2024-11, Vol.38 (6), p.21-28
issn 0890-8044
1558-156X
language eng
recordid cdi_crossref_primary_10_1109_MNET_2024_3414144
source IEEE Electronic Library (IEL)
subjects Autonomous systems
Collaboration
Data mining
Distributed computing
Feature extraction
Federated learning
Intelligent systems
Robot sensing systems
Scheduling
Semantic communication
Wireless communication
Wireless sensor networks
title Task-Oriented Wireless Communications for Collaborative Perception in Intelligent Unmanned Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task-Oriented%20Wireless%20Communications%20for%20Collaborative%20Perception%20in%20Intelligent%20Unmanned%20Systems&rft.jtitle=IEEE%20network&rft.au=Zhou,%20Sheng&rft.date=2024-11&rft.volume=38&rft.issue=6&rft.spage=21&rft.epage=28&rft.pages=21-28&rft.issn=0890-8044&rft.eissn=1558-156X&rft.coden=IENEET&rft_id=info:doi/10.1109/MNET.2024.3414144&rft_dat=%3Ccrossref_RIE%3E10_1109_MNET_2024_3414144%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10556778&rfr_iscdi=true