Task-Oriented Wireless Communications for Collaborative Perception in Intelligent Unmanned Systems
Collaborative Perception (CP) has shown great potential to achieve more holistic and reliable environmental perception in intelligent unmanned systems (IUSs). However, implementing CP still faces key challenges due to the characteristics of the CP task and the dynamics of wireless channels. In this...
Gespeichert in:
Veröffentlicht in: | IEEE network 2024-11, Vol.38 (6), p.21-28 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 6 |
container_start_page | 21 |
container_title | IEEE network |
container_volume | 38 |
creator | Zhou, Sheng Jia, Yukuan Mao, Ruiqing Nan, Zhaojun Sun, Yuxuan Niu, Zhisheng |
description | Collaborative Perception (CP) has shown great potential to achieve more holistic and reliable environmental perception in intelligent unmanned systems (IUSs). However, implementing CP still faces key challenges due to the characteristics of the CP task and the dynamics of wireless channels. In this article, a task-oriented wireless communication framework is proposed to jointly optimize the communication scheme and the CP procedure. We first propose channel-adaptive compression and robust fusion approaches to extract and exploit the most valuable semantic information under wireless communication constraints. We then propose a task-oriented distributed scheduling algorithm to identify the best collaborators for CP under dynamic environments. The main idea is learning while scheduling, where the collaboration utility is effectively learned with low computation and communication overhead. Case studies are carried out in connected autonomous driving scenarios to verify the proposed framework. Finally, we identify several future research directions. |
doi_str_mv | 10.1109/MNET.2024.3414144 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MNET_2024_3414144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10556778</ieee_id><sourcerecordid>10_1109_MNET_2024_3414144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-9ec5fbacaae83325449bb85d3545121148456ae880cc5bf21c013d0382a3842b3</originalsourceid><addsrcrecordid>eNpNkMtKAzEUhoMoWKsPILjIC0zNyaXNLKVULVQr2KK7IUnPSHQmU5JR6NuboS7kLA78t8VHyDWwCQArb5-eF5sJZ1xOhIR88oSMQCldgJq-n5IR0yUrNJPynFyk9MkYSCX4iNiNSV_FOnoMPe7om4_YYEp03rXtd_DO9L4LidZdzFLTGNvFLP0gfcHocD-41Ae6zO2m8R95hW5Da0LIY6-H1GObLslZbZqEV39_TLb3i838sVitH5bzu1XhQOq-KNGp2hpnDGohuJKytFarnVBSAYeckWqaPc2cU7bm4BiIHROaG6Elt2JM4LjrYpdSxLraR9-aeKiAVQOkaoBUDZCqP0i5c3PseET8l1dqOptp8Qtl92Ul</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Task-Oriented Wireless Communications for Collaborative Perception in Intelligent Unmanned Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Sheng ; Jia, Yukuan ; Mao, Ruiqing ; Nan, Zhaojun ; Sun, Yuxuan ; Niu, Zhisheng</creator><creatorcontrib>Zhou, Sheng ; Jia, Yukuan ; Mao, Ruiqing ; Nan, Zhaojun ; Sun, Yuxuan ; Niu, Zhisheng</creatorcontrib><description>Collaborative Perception (CP) has shown great potential to achieve more holistic and reliable environmental perception in intelligent unmanned systems (IUSs). However, implementing CP still faces key challenges due to the characteristics of the CP task and the dynamics of wireless channels. In this article, a task-oriented wireless communication framework is proposed to jointly optimize the communication scheme and the CP procedure. We first propose channel-adaptive compression and robust fusion approaches to extract and exploit the most valuable semantic information under wireless communication constraints. We then propose a task-oriented distributed scheduling algorithm to identify the best collaborators for CP under dynamic environments. The main idea is learning while scheduling, where the collaboration utility is effectively learned with low computation and communication overhead. Case studies are carried out in connected autonomous driving scenarios to verify the proposed framework. Finally, we identify several future research directions.</description><identifier>ISSN: 0890-8044</identifier><identifier>EISSN: 1558-156X</identifier><identifier>DOI: 10.1109/MNET.2024.3414144</identifier><identifier>CODEN: IENEET</identifier><language>eng</language><publisher>IEEE</publisher><subject>Autonomous systems ; Collaboration ; Data mining ; Distributed computing ; Feature extraction ; Federated learning ; Intelligent systems ; Robot sensing systems ; Scheduling ; Semantic communication ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE network, 2024-11, Vol.38 (6), p.21-28</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9720-6993 ; 0000-0003-1487-2179 ; 0000-0001-7169-3922 ; 0000-0002-2378-9433 ; 0000-0003-0420-2024 ; 0000-0003-0651-0071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10556778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10556778$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Sheng</creatorcontrib><creatorcontrib>Jia, Yukuan</creatorcontrib><creatorcontrib>Mao, Ruiqing</creatorcontrib><creatorcontrib>Nan, Zhaojun</creatorcontrib><creatorcontrib>Sun, Yuxuan</creatorcontrib><creatorcontrib>Niu, Zhisheng</creatorcontrib><title>Task-Oriented Wireless Communications for Collaborative Perception in Intelligent Unmanned Systems</title><title>IEEE network</title><addtitle>NET-M</addtitle><description>Collaborative Perception (CP) has shown great potential to achieve more holistic and reliable environmental perception in intelligent unmanned systems (IUSs). However, implementing CP still faces key challenges due to the characteristics of the CP task and the dynamics of wireless channels. In this article, a task-oriented wireless communication framework is proposed to jointly optimize the communication scheme and the CP procedure. We first propose channel-adaptive compression and robust fusion approaches to extract and exploit the most valuable semantic information under wireless communication constraints. We then propose a task-oriented distributed scheduling algorithm to identify the best collaborators for CP under dynamic environments. The main idea is learning while scheduling, where the collaboration utility is effectively learned with low computation and communication overhead. Case studies are carried out in connected autonomous driving scenarios to verify the proposed framework. Finally, we identify several future research directions.</description><subject>Autonomous systems</subject><subject>Collaboration</subject><subject>Data mining</subject><subject>Distributed computing</subject><subject>Feature extraction</subject><subject>Federated learning</subject><subject>Intelligent systems</subject><subject>Robot sensing systems</subject><subject>Scheduling</subject><subject>Semantic communication</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>0890-8044</issn><issn>1558-156X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtKAzEUhoMoWKsPILjIC0zNyaXNLKVULVQr2KK7IUnPSHQmU5JR6NuboS7kLA78t8VHyDWwCQArb5-eF5sJZ1xOhIR88oSMQCldgJq-n5IR0yUrNJPynFyk9MkYSCX4iNiNSV_FOnoMPe7om4_YYEp03rXtd_DO9L4LidZdzFLTGNvFLP0gfcHocD-41Ae6zO2m8R95hW5Da0LIY6-H1GObLslZbZqEV39_TLb3i838sVitH5bzu1XhQOq-KNGp2hpnDGohuJKytFarnVBSAYeckWqaPc2cU7bm4BiIHROaG6Elt2JM4LjrYpdSxLraR9-aeKiAVQOkaoBUDZCqP0i5c3PseET8l1dqOptp8Qtl92Ul</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Zhou, Sheng</creator><creator>Jia, Yukuan</creator><creator>Mao, Ruiqing</creator><creator>Nan, Zhaojun</creator><creator>Sun, Yuxuan</creator><creator>Niu, Zhisheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9720-6993</orcidid><orcidid>https://orcid.org/0000-0003-1487-2179</orcidid><orcidid>https://orcid.org/0000-0001-7169-3922</orcidid><orcidid>https://orcid.org/0000-0002-2378-9433</orcidid><orcidid>https://orcid.org/0000-0003-0420-2024</orcidid><orcidid>https://orcid.org/0000-0003-0651-0071</orcidid></search><sort><creationdate>202411</creationdate><title>Task-Oriented Wireless Communications for Collaborative Perception in Intelligent Unmanned Systems</title><author>Zhou, Sheng ; Jia, Yukuan ; Mao, Ruiqing ; Nan, Zhaojun ; Sun, Yuxuan ; Niu, Zhisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-9ec5fbacaae83325449bb85d3545121148456ae880cc5bf21c013d0382a3842b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous systems</topic><topic>Collaboration</topic><topic>Data mining</topic><topic>Distributed computing</topic><topic>Feature extraction</topic><topic>Federated learning</topic><topic>Intelligent systems</topic><topic>Robot sensing systems</topic><topic>Scheduling</topic><topic>Semantic communication</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Sheng</creatorcontrib><creatorcontrib>Jia, Yukuan</creatorcontrib><creatorcontrib>Mao, Ruiqing</creatorcontrib><creatorcontrib>Nan, Zhaojun</creatorcontrib><creatorcontrib>Sun, Yuxuan</creatorcontrib><creatorcontrib>Niu, Zhisheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE network</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Sheng</au><au>Jia, Yukuan</au><au>Mao, Ruiqing</au><au>Nan, Zhaojun</au><au>Sun, Yuxuan</au><au>Niu, Zhisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task-Oriented Wireless Communications for Collaborative Perception in Intelligent Unmanned Systems</atitle><jtitle>IEEE network</jtitle><stitle>NET-M</stitle><date>2024-11</date><risdate>2024</risdate><volume>38</volume><issue>6</issue><spage>21</spage><epage>28</epage><pages>21-28</pages><issn>0890-8044</issn><eissn>1558-156X</eissn><coden>IENEET</coden><abstract>Collaborative Perception (CP) has shown great potential to achieve more holistic and reliable environmental perception in intelligent unmanned systems (IUSs). However, implementing CP still faces key challenges due to the characteristics of the CP task and the dynamics of wireless channels. In this article, a task-oriented wireless communication framework is proposed to jointly optimize the communication scheme and the CP procedure. We first propose channel-adaptive compression and robust fusion approaches to extract and exploit the most valuable semantic information under wireless communication constraints. We then propose a task-oriented distributed scheduling algorithm to identify the best collaborators for CP under dynamic environments. The main idea is learning while scheduling, where the collaboration utility is effectively learned with low computation and communication overhead. Case studies are carried out in connected autonomous driving scenarios to verify the proposed framework. Finally, we identify several future research directions.</abstract><pub>IEEE</pub><doi>10.1109/MNET.2024.3414144</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9720-6993</orcidid><orcidid>https://orcid.org/0000-0003-1487-2179</orcidid><orcidid>https://orcid.org/0000-0001-7169-3922</orcidid><orcidid>https://orcid.org/0000-0002-2378-9433</orcidid><orcidid>https://orcid.org/0000-0003-0420-2024</orcidid><orcidid>https://orcid.org/0000-0003-0651-0071</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0890-8044 |
ispartof | IEEE network, 2024-11, Vol.38 (6), p.21-28 |
issn | 0890-8044 1558-156X |
language | eng |
recordid | cdi_crossref_primary_10_1109_MNET_2024_3414144 |
source | IEEE Electronic Library (IEL) |
subjects | Autonomous systems Collaboration Data mining Distributed computing Feature extraction Federated learning Intelligent systems Robot sensing systems Scheduling Semantic communication Wireless communication Wireless sensor networks |
title | Task-Oriented Wireless Communications for Collaborative Perception in Intelligent Unmanned Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task-Oriented%20Wireless%20Communications%20for%20Collaborative%20Perception%20in%20Intelligent%20Unmanned%20Systems&rft.jtitle=IEEE%20network&rft.au=Zhou,%20Sheng&rft.date=2024-11&rft.volume=38&rft.issue=6&rft.spage=21&rft.epage=28&rft.pages=21-28&rft.issn=0890-8044&rft.eissn=1558-156X&rft.coden=IENEET&rft_id=info:doi/10.1109/MNET.2024.3414144&rft_dat=%3Ccrossref_RIE%3E10_1109_MNET_2024_3414144%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10556778&rfr_iscdi=true |