Intrusion Detection for Intelligent Connected Vehicles Based on Bidirectional Temporal Convolutional Network

Intelligent Connected Vehicles (ICVs) are increasingly prevalent, with various applications and systems operating in complex network environments. Consequently, detecting and preventing network intrusion is increasingly important. The Controller Area Network (CAN) is presently the predominant networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE network 2024-11, Vol.38 (6), p.113-119
Hauptverfasser: Mei, Yangyang, Han, Weihong, Lin, Kaihan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 6
container_start_page 113
container_title IEEE network
container_volume 38
creator Mei, Yangyang
Han, Weihong
Lin, Kaihan
description Intelligent Connected Vehicles (ICVs) are increasingly prevalent, with various applications and systems operating in complex network environments. Consequently, detecting and preventing network intrusion is increasingly important. The Controller Area Network (CAN) is presently the predominant network in vehicles, capturing communication among Electronic Control Units. Such data can facilitate the analysis of system anomalies and enhance security measures. In response, a novel intrusion detection framework is proposed, leveraging the additive fusion Bidirectional Temporal Convolutional Network (BiTCN) model. The model treats the CAN message sequence as a natural language sequence, extracting features through bidirectional sliding windows and stacked Temporal Convolutional Network residual blocks. An additive fusion strategy is employed for feature fusion to detect system anomalies more effectively. Experimental results demonstrate that the proposed framework outperforms other models in both detection efficiency and performance. Overall, this framework provides a promising solution for detecting and preventing network intrusion in ICVs.
doi_str_mv 10.1109/MNET.2024.3390937
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MNET_2024_3390937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10504900</ieee_id><sourcerecordid>10_1109_MNET_2024_3390937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-96a5def91f349a2df68dc067fce57cbc6580b1aae530f448d16ea1153a38c33</originalsourceid><addsrcrecordid>eNpNkMFOwzAQRC0EEqXwAUgc8gMp69hO7SMtLVQq5UCFuEWuswaDm1R2CuLvcdQeOO3s7Lw9DCHXFEaUgrp9Ws3WowIKPmJMgWLjEzKgQsicivLtlAxAKsglcH5OLmL8BKBcsGJA_KLpwj66tsnusUPT9cq2IUs-eu_esemyads06YR19oofzniM2UTHtKbsxNUuHDjtszVud21IIiHfrd8f7RV2P234uiRnVvuIV8c5JC_z2Xr6mC-fHxbTu2VuKJddrkotarSKWsaVLmpbytpAObYGxdhsTCkkbKjWKBhYzmVNS9SUCqaZNIwNCT18NaGNMaCtdsFtdfitKFR9WVVfVtWXVR3LSszNgXGI-C8vgCsA9geoFmkt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intrusion Detection for Intelligent Connected Vehicles Based on Bidirectional Temporal Convolutional Network</title><source>IEEE Electronic Library (IEL)</source><creator>Mei, Yangyang ; Han, Weihong ; Lin, Kaihan</creator><creatorcontrib>Mei, Yangyang ; Han, Weihong ; Lin, Kaihan</creatorcontrib><description>Intelligent Connected Vehicles (ICVs) are increasingly prevalent, with various applications and systems operating in complex network environments. Consequently, detecting and preventing network intrusion is increasingly important. The Controller Area Network (CAN) is presently the predominant network in vehicles, capturing communication among Electronic Control Units. Such data can facilitate the analysis of system anomalies and enhance security measures. In response, a novel intrusion detection framework is proposed, leveraging the additive fusion Bidirectional Temporal Convolutional Network (BiTCN) model. The model treats the CAN message sequence as a natural language sequence, extracting features through bidirectional sliding windows and stacked Temporal Convolutional Network residual blocks. An additive fusion strategy is employed for feature fusion to detect system anomalies more effectively. Experimental results demonstrate that the proposed framework outperforms other models in both detection efficiency and performance. Overall, this framework provides a promising solution for detecting and preventing network intrusion in ICVs.</description><identifier>ISSN: 0890-8044</identifier><identifier>EISSN: 1558-156X</identifier><identifier>DOI: 10.1109/MNET.2024.3390937</identifier><identifier>CODEN: IENEET</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bidirectional Temporal Convolutional Network ; Connected vehicles ; Controller Area Network ; Convolutional neural networks ; Feature extraction ; feature fusion ; Intelligent Connected Vehicles ; Intelligent vehicles ; Intrusion detection ; Long short term memory ; Protocols ; Recurrent neural networks ; Training</subject><ispartof>IEEE network, 2024-11, Vol.38 (6), p.113-119</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-96a5def91f349a2df68dc067fce57cbc6580b1aae530f448d16ea1153a38c33</cites><orcidid>0009-0001-4867-9732 ; 0000-0001-6153-3722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10504900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10504900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mei, Yangyang</creatorcontrib><creatorcontrib>Han, Weihong</creatorcontrib><creatorcontrib>Lin, Kaihan</creatorcontrib><title>Intrusion Detection for Intelligent Connected Vehicles Based on Bidirectional Temporal Convolutional Network</title><title>IEEE network</title><addtitle>NET-M</addtitle><description>Intelligent Connected Vehicles (ICVs) are increasingly prevalent, with various applications and systems operating in complex network environments. Consequently, detecting and preventing network intrusion is increasingly important. The Controller Area Network (CAN) is presently the predominant network in vehicles, capturing communication among Electronic Control Units. Such data can facilitate the analysis of system anomalies and enhance security measures. In response, a novel intrusion detection framework is proposed, leveraging the additive fusion Bidirectional Temporal Convolutional Network (BiTCN) model. The model treats the CAN message sequence as a natural language sequence, extracting features through bidirectional sliding windows and stacked Temporal Convolutional Network residual blocks. An additive fusion strategy is employed for feature fusion to detect system anomalies more effectively. Experimental results demonstrate that the proposed framework outperforms other models in both detection efficiency and performance. Overall, this framework provides a promising solution for detecting and preventing network intrusion in ICVs.</description><subject>Bidirectional Temporal Convolutional Network</subject><subject>Connected vehicles</subject><subject>Controller Area Network</subject><subject>Convolutional neural networks</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Intelligent Connected Vehicles</subject><subject>Intelligent vehicles</subject><subject>Intrusion detection</subject><subject>Long short term memory</subject><subject>Protocols</subject><subject>Recurrent neural networks</subject><subject>Training</subject><issn>0890-8044</issn><issn>1558-156X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwzAQRC0EEqXwAUgc8gMp69hO7SMtLVQq5UCFuEWuswaDm1R2CuLvcdQeOO3s7Lw9DCHXFEaUgrp9Ws3WowIKPmJMgWLjEzKgQsicivLtlAxAKsglcH5OLmL8BKBcsGJA_KLpwj66tsnusUPT9cq2IUs-eu_esemyads06YR19oofzniM2UTHtKbsxNUuHDjtszVud21IIiHfrd8f7RV2P234uiRnVvuIV8c5JC_z2Xr6mC-fHxbTu2VuKJddrkotarSKWsaVLmpbytpAObYGxdhsTCkkbKjWKBhYzmVNS9SUCqaZNIwNCT18NaGNMaCtdsFtdfitKFR9WVVfVtWXVR3LSszNgXGI-C8vgCsA9geoFmkt</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Mei, Yangyang</creator><creator>Han, Weihong</creator><creator>Lin, Kaihan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0001-4867-9732</orcidid><orcidid>https://orcid.org/0000-0001-6153-3722</orcidid></search><sort><creationdate>202411</creationdate><title>Intrusion Detection for Intelligent Connected Vehicles Based on Bidirectional Temporal Convolutional Network</title><author>Mei, Yangyang ; Han, Weihong ; Lin, Kaihan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-96a5def91f349a2df68dc067fce57cbc6580b1aae530f448d16ea1153a38c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bidirectional Temporal Convolutional Network</topic><topic>Connected vehicles</topic><topic>Controller Area Network</topic><topic>Convolutional neural networks</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Intelligent Connected Vehicles</topic><topic>Intelligent vehicles</topic><topic>Intrusion detection</topic><topic>Long short term memory</topic><topic>Protocols</topic><topic>Recurrent neural networks</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Yangyang</creatorcontrib><creatorcontrib>Han, Weihong</creatorcontrib><creatorcontrib>Lin, Kaihan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE network</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mei, Yangyang</au><au>Han, Weihong</au><au>Lin, Kaihan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrusion Detection for Intelligent Connected Vehicles Based on Bidirectional Temporal Convolutional Network</atitle><jtitle>IEEE network</jtitle><stitle>NET-M</stitle><date>2024-11</date><risdate>2024</risdate><volume>38</volume><issue>6</issue><spage>113</spage><epage>119</epage><pages>113-119</pages><issn>0890-8044</issn><eissn>1558-156X</eissn><coden>IENEET</coden><abstract>Intelligent Connected Vehicles (ICVs) are increasingly prevalent, with various applications and systems operating in complex network environments. Consequently, detecting and preventing network intrusion is increasingly important. The Controller Area Network (CAN) is presently the predominant network in vehicles, capturing communication among Electronic Control Units. Such data can facilitate the analysis of system anomalies and enhance security measures. In response, a novel intrusion detection framework is proposed, leveraging the additive fusion Bidirectional Temporal Convolutional Network (BiTCN) model. The model treats the CAN message sequence as a natural language sequence, extracting features through bidirectional sliding windows and stacked Temporal Convolutional Network residual blocks. An additive fusion strategy is employed for feature fusion to detect system anomalies more effectively. Experimental results demonstrate that the proposed framework outperforms other models in both detection efficiency and performance. Overall, this framework provides a promising solution for detecting and preventing network intrusion in ICVs.</abstract><pub>IEEE</pub><doi>10.1109/MNET.2024.3390937</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0001-4867-9732</orcidid><orcidid>https://orcid.org/0000-0001-6153-3722</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0890-8044
ispartof IEEE network, 2024-11, Vol.38 (6), p.113-119
issn 0890-8044
1558-156X
language eng
recordid cdi_crossref_primary_10_1109_MNET_2024_3390937
source IEEE Electronic Library (IEL)
subjects Bidirectional Temporal Convolutional Network
Connected vehicles
Controller Area Network
Convolutional neural networks
Feature extraction
feature fusion
Intelligent Connected Vehicles
Intelligent vehicles
Intrusion detection
Long short term memory
Protocols
Recurrent neural networks
Training
title Intrusion Detection for Intelligent Connected Vehicles Based on Bidirectional Temporal Convolutional Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrusion%20Detection%20for%20Intelligent%20Connected%20Vehicles%20Based%20on%20Bidirectional%20Temporal%20Convolutional%20Network&rft.jtitle=IEEE%20network&rft.au=Mei,%20Yangyang&rft.date=2024-11&rft.volume=38&rft.issue=6&rft.spage=113&rft.epage=119&rft.pages=113-119&rft.issn=0890-8044&rft.eissn=1558-156X&rft.coden=IENEET&rft_id=info:doi/10.1109/MNET.2024.3390937&rft_dat=%3Ccrossref_RIE%3E10_1109_MNET_2024_3390937%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10504900&rfr_iscdi=true