Digital Twin-Based Cloud-Native Vehicular Networks Architecture for Intelligent Driving
As a key technology in intelligent driving, Cooperative Vehicle Infrastructure System is an advanced communication framework that enables cooperative and information exchange between vehicles and infrastructure. However, this system encounters challenges in meeting the low latency, ultra reliability...
Gespeichert in:
Veröffentlicht in: | IEEE network 2024-01, Vol.38 (1), p.69-76 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | IEEE network |
container_volume | 38 |
creator | Tan, Xiaobin Meng, Qiushi Wang, Mingyang Zheng, Quan Wu, Jun Yang, Jian |
description | As a key technology in intelligent driving, Cooperative Vehicle Infrastructure System is an advanced communication framework that enables cooperative and information exchange between vehicles and infrastructure. However, this system encounters challenges in meeting the low latency, ultra reliability, and high efficiency requirements of task execution of intelligent driving applications. Meanwhile, the deployment and combination of some key technologies supporting this system are not well-established. To address these issues, this article proposes a Digital Twin-based Cloud-native Vehicular Networks (DT-CVN) architecture to enhance the efficiency of virtual-reality integration in real-world vehicle traffic scenarios. In DT-CVN, the digital twins, which can bridge the physical space and cyberspace gaps in real-time, are implemented and deployed in a distributed manner by leveraging the distributed features of microservices based on cloud-native technology. DT-CVN employs the cybertwin as a smart communication agent in cloud-native vehicular networks, enabling efficient communication between cyberspace and physical spaces. Moreover, a case study is presented to demonstrate the effectiveness of DT-CVN. Simulation result shows the potential to address the challenges of integrating resources in vehicular networks with our proposed DT-CVN. |
doi_str_mv | 10.1109/MNET.2023.3337271 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MNET_2023_3337271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10329347</ieee_id><sourcerecordid>3041499638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-38284b311ef2178e46b6dd79564949a8439a68988ccb94af2929f31462a1450d3</originalsourceid><addsrcrecordid>eNpNkEtPAjEUhRujiYj-ABMXTVwP9jWddomISoK4wceuKTN3oDjOYNuB-O8dAgtXZ_Ode3M-hK4pGVBK9N3LbDwfMML4gHOesYyeoB5NU5XQVH6eoh5RmiSKCHGOLkJYE0JFylkPfTy4pYu2wvOdq5N7G6DAo6ppi2Rmo9sCfoeVy9vKejyDuGv8V8BDn69chDy2HnDZeDypI1SVW0Id8YN3W1cvL9FZaasAV8fso7fH8Xz0nExfnyaj4TTJmZAx4YopseCUQslopkDIhSyKTKdSaKGtElxbqbRSeb7QwpZMM11yKiSz3QBS8D66Pdzd-OanhRDNuml93b00nAgqtJZcdRQ9ULlvQvBQmo1339b_GkrM3p_Z-zN7f-bor-vcHDoOAP7xnGkuMv4HatNrMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041499638</pqid></control><display><type>article</type><title>Digital Twin-Based Cloud-Native Vehicular Networks Architecture for Intelligent Driving</title><source>IEEE Electronic Library (IEL)</source><creator>Tan, Xiaobin ; Meng, Qiushi ; Wang, Mingyang ; Zheng, Quan ; Wu, Jun ; Yang, Jian</creator><creatorcontrib>Tan, Xiaobin ; Meng, Qiushi ; Wang, Mingyang ; Zheng, Quan ; Wu, Jun ; Yang, Jian</creatorcontrib><description>As a key technology in intelligent driving, Cooperative Vehicle Infrastructure System is an advanced communication framework that enables cooperative and information exchange between vehicles and infrastructure. However, this system encounters challenges in meeting the low latency, ultra reliability, and high efficiency requirements of task execution of intelligent driving applications. Meanwhile, the deployment and combination of some key technologies supporting this system are not well-established. To address these issues, this article proposes a Digital Twin-based Cloud-native Vehicular Networks (DT-CVN) architecture to enhance the efficiency of virtual-reality integration in real-world vehicle traffic scenarios. In DT-CVN, the digital twins, which can bridge the physical space and cyberspace gaps in real-time, are implemented and deployed in a distributed manner by leveraging the distributed features of microservices based on cloud-native technology. DT-CVN employs the cybertwin as a smart communication agent in cloud-native vehicular networks, enabling efficient communication between cyberspace and physical spaces. Moreover, a case study is presented to demonstrate the effectiveness of DT-CVN. Simulation result shows the potential to address the challenges of integrating resources in vehicular networks with our proposed DT-CVN.</description><identifier>ISSN: 0890-8044</identifier><identifier>EISSN: 1558-156X</identifier><identifier>DOI: 10.1109/MNET.2023.3337271</identifier><identifier>CODEN: IENEET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Advanced driver assistance systems ; Cloud computing ; Communication ; Cyberspace ; Digital twins ; Driving ; Infrastructure ; Network latency ; Real-time systems ; Servers ; Task analysis ; Vehicle dynamics ; Vehicles ; Vehicular ad hoc networks ; Virtual reality</subject><ispartof>IEEE network, 2024-01, Vol.38 (1), p.69-76</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-38284b311ef2178e46b6dd79564949a8439a68988ccb94af2929f31462a1450d3</cites><orcidid>0000-0001-7489-2839 ; 0009-0003-3846-4919 ; 0000-0001-7090-8653 ; 0009-0002-4710-6569 ; 0000-0002-8736-1161 ; 0000-0002-7329-4738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10329347$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10329347$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tan, Xiaobin</creatorcontrib><creatorcontrib>Meng, Qiushi</creatorcontrib><creatorcontrib>Wang, Mingyang</creatorcontrib><creatorcontrib>Zheng, Quan</creatorcontrib><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><title>Digital Twin-Based Cloud-Native Vehicular Networks Architecture for Intelligent Driving</title><title>IEEE network</title><addtitle>NET-M</addtitle><description>As a key technology in intelligent driving, Cooperative Vehicle Infrastructure System is an advanced communication framework that enables cooperative and information exchange between vehicles and infrastructure. However, this system encounters challenges in meeting the low latency, ultra reliability, and high efficiency requirements of task execution of intelligent driving applications. Meanwhile, the deployment and combination of some key technologies supporting this system are not well-established. To address these issues, this article proposes a Digital Twin-based Cloud-native Vehicular Networks (DT-CVN) architecture to enhance the efficiency of virtual-reality integration in real-world vehicle traffic scenarios. In DT-CVN, the digital twins, which can bridge the physical space and cyberspace gaps in real-time, are implemented and deployed in a distributed manner by leveraging the distributed features of microservices based on cloud-native technology. DT-CVN employs the cybertwin as a smart communication agent in cloud-native vehicular networks, enabling efficient communication between cyberspace and physical spaces. Moreover, a case study is presented to demonstrate the effectiveness of DT-CVN. Simulation result shows the potential to address the challenges of integrating resources in vehicular networks with our proposed DT-CVN.</description><subject>Advanced driver assistance systems</subject><subject>Cloud computing</subject><subject>Communication</subject><subject>Cyberspace</subject><subject>Digital twins</subject><subject>Driving</subject><subject>Infrastructure</subject><subject>Network latency</subject><subject>Real-time systems</subject><subject>Servers</subject><subject>Task analysis</subject><subject>Vehicle dynamics</subject><subject>Vehicles</subject><subject>Vehicular ad hoc networks</subject><subject>Virtual reality</subject><issn>0890-8044</issn><issn>1558-156X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPAjEUhRujiYj-ABMXTVwP9jWddomISoK4wceuKTN3oDjOYNuB-O8dAgtXZ_Ode3M-hK4pGVBK9N3LbDwfMML4gHOesYyeoB5NU5XQVH6eoh5RmiSKCHGOLkJYE0JFylkPfTy4pYu2wvOdq5N7G6DAo6ppi2Rmo9sCfoeVy9vKejyDuGv8V8BDn69chDy2HnDZeDypI1SVW0Id8YN3W1cvL9FZaasAV8fso7fH8Xz0nExfnyaj4TTJmZAx4YopseCUQslopkDIhSyKTKdSaKGtElxbqbRSeb7QwpZMM11yKiSz3QBS8D66Pdzd-OanhRDNuml93b00nAgqtJZcdRQ9ULlvQvBQmo1339b_GkrM3p_Z-zN7f-bor-vcHDoOAP7xnGkuMv4HatNrMA</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Tan, Xiaobin</creator><creator>Meng, Qiushi</creator><creator>Wang, Mingyang</creator><creator>Zheng, Quan</creator><creator>Wu, Jun</creator><creator>Yang, Jian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7489-2839</orcidid><orcidid>https://orcid.org/0009-0003-3846-4919</orcidid><orcidid>https://orcid.org/0000-0001-7090-8653</orcidid><orcidid>https://orcid.org/0009-0002-4710-6569</orcidid><orcidid>https://orcid.org/0000-0002-8736-1161</orcidid><orcidid>https://orcid.org/0000-0002-7329-4738</orcidid></search><sort><creationdate>202401</creationdate><title>Digital Twin-Based Cloud-Native Vehicular Networks Architecture for Intelligent Driving</title><author>Tan, Xiaobin ; Meng, Qiushi ; Wang, Mingyang ; Zheng, Quan ; Wu, Jun ; Yang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-38284b311ef2178e46b6dd79564949a8439a68988ccb94af2929f31462a1450d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advanced driver assistance systems</topic><topic>Cloud computing</topic><topic>Communication</topic><topic>Cyberspace</topic><topic>Digital twins</topic><topic>Driving</topic><topic>Infrastructure</topic><topic>Network latency</topic><topic>Real-time systems</topic><topic>Servers</topic><topic>Task analysis</topic><topic>Vehicle dynamics</topic><topic>Vehicles</topic><topic>Vehicular ad hoc networks</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Xiaobin</creatorcontrib><creatorcontrib>Meng, Qiushi</creatorcontrib><creatorcontrib>Wang, Mingyang</creatorcontrib><creatorcontrib>Zheng, Quan</creatorcontrib><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE network</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tan, Xiaobin</au><au>Meng, Qiushi</au><au>Wang, Mingyang</au><au>Zheng, Quan</au><au>Wu, Jun</au><au>Yang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Twin-Based Cloud-Native Vehicular Networks Architecture for Intelligent Driving</atitle><jtitle>IEEE network</jtitle><stitle>NET-M</stitle><date>2024-01</date><risdate>2024</risdate><volume>38</volume><issue>1</issue><spage>69</spage><epage>76</epage><pages>69-76</pages><issn>0890-8044</issn><eissn>1558-156X</eissn><coden>IENEET</coden><abstract>As a key technology in intelligent driving, Cooperative Vehicle Infrastructure System is an advanced communication framework that enables cooperative and information exchange between vehicles and infrastructure. However, this system encounters challenges in meeting the low latency, ultra reliability, and high efficiency requirements of task execution of intelligent driving applications. Meanwhile, the deployment and combination of some key technologies supporting this system are not well-established. To address these issues, this article proposes a Digital Twin-based Cloud-native Vehicular Networks (DT-CVN) architecture to enhance the efficiency of virtual-reality integration in real-world vehicle traffic scenarios. In DT-CVN, the digital twins, which can bridge the physical space and cyberspace gaps in real-time, are implemented and deployed in a distributed manner by leveraging the distributed features of microservices based on cloud-native technology. DT-CVN employs the cybertwin as a smart communication agent in cloud-native vehicular networks, enabling efficient communication between cyberspace and physical spaces. Moreover, a case study is presented to demonstrate the effectiveness of DT-CVN. Simulation result shows the potential to address the challenges of integrating resources in vehicular networks with our proposed DT-CVN.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MNET.2023.3337271</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7489-2839</orcidid><orcidid>https://orcid.org/0009-0003-3846-4919</orcidid><orcidid>https://orcid.org/0000-0001-7090-8653</orcidid><orcidid>https://orcid.org/0009-0002-4710-6569</orcidid><orcidid>https://orcid.org/0000-0002-8736-1161</orcidid><orcidid>https://orcid.org/0000-0002-7329-4738</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0890-8044 |
ispartof | IEEE network, 2024-01, Vol.38 (1), p.69-76 |
issn | 0890-8044 1558-156X |
language | eng |
recordid | cdi_crossref_primary_10_1109_MNET_2023_3337271 |
source | IEEE Electronic Library (IEL) |
subjects | Advanced driver assistance systems Cloud computing Communication Cyberspace Digital twins Driving Infrastructure Network latency Real-time systems Servers Task analysis Vehicle dynamics Vehicles Vehicular ad hoc networks Virtual reality |
title | Digital Twin-Based Cloud-Native Vehicular Networks Architecture for Intelligent Driving |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Twin-Based%20Cloud-Native%20Vehicular%20Networks%20Architecture%20for%20Intelligent%20Driving&rft.jtitle=IEEE%20network&rft.au=Tan,%20Xiaobin&rft.date=2024-01&rft.volume=38&rft.issue=1&rft.spage=69&rft.epage=76&rft.pages=69-76&rft.issn=0890-8044&rft.eissn=1558-156X&rft.coden=IENEET&rft_id=info:doi/10.1109/MNET.2023.3337271&rft_dat=%3Cproquest_RIE%3E3041499638%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041499638&rft_id=info:pmid/&rft_ieee_id=10329347&rfr_iscdi=true |