Edge Intelligence Empowered Metaverse: Architecture, Technologies, and Open Issues

Recently, the metaverse has emerged as a focal point of widespread interest, capturing attention across various domains. However, the construction of a pluralistic, realistic, and shared digital world is still in its infancy. Due to the ultra-strict requirements in security, intelligence, and real-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE network 2023-11, Vol.37 (6), p.1-1
Hauptverfasser: Xu, Yanan, Feng, Daquan, Zhao, Mingxiong, Sun, Yao, Xia, Xiang-Gen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 6
container_start_page 1
container_title IEEE network
container_volume 37
creator Xu, Yanan
Feng, Daquan
Zhao, Mingxiong
Sun, Yao
Xia, Xiang-Gen
description Recently, the metaverse has emerged as a focal point of widespread interest, capturing attention across various domains. However, the construction of a pluralistic, realistic, and shared digital world is still in its infancy. Due to the ultra-strict requirements in security, intelligence, and real-time, it is urgent to solve the technical challenges existed in building metaverse ecosystems, such as ensuring the provision of seamless communication and reliable computing services in the face of a dynamic and time-varying complex network environment. In terms of digital infrastructure, edge computing (EC), as a distributed computing paradigm, has the potential to guarantee computing power, bandwidth, and storage. Meanwhile, artificial intelligence (AI) is regarded as a powerful tool to provide technical support for automated and efficient decision-making for metaverse devices. In this context, this paper focuses on integrating EC and AI to facilitate the development of the metaverse, namely, the edge intelligence-empowered metaverse. Specifically, we first outline the metaverse architecture and driving technologies and discuss EC as a key component of the digital infrastructure for metaverse realization. Then, we elaborate on two mainstream classifications of edge intelligence in metaverse scenarios, including AI for edge and AI on edge. Finally, we identify some open issues.
doi_str_mv 10.1109/MNET.2023.3317477
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MNET_2023_3317477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10273380</ieee_id><sourcerecordid>3015029677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-34dfddd3d862da12cdd223fca27afef05ea9ba7fd24a8adbab86accccc339aca3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRsFZ_gOBiwG1T5yPJJO5KiVpoLUgFd8PrzEubkiZxJrX4701oF77N25x7LxxC7jkbc87Sp8V7thoLJuRYSq5CpS7IgEdREvAo_rokA5akLEhYGF6TG-93jPEwkmJAPjK7QTqrWizLYoOVQZrtm_qIDi1dYAs_6Dw-04kz26JF0x4cjugKzbaqy3pToB9RqCxdNljRmfcH9LfkKofS4935D8nnS7aavgXz5etsOpkHRoRxG8jQ5tZaaZNYWODCWCuEzA0IBTnmLEJI16ByK0JIwK5hncRg-pMyBQNySB5PvY2rv7vdVu_qg6u6SS0Zj5hIY6U6ip8o42rvHea6ccUe3K_mTPfqdK9O9-r0WV2XeThlCkT8xwslZcLkH-9RbMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015029677</pqid></control><display><type>article</type><title>Edge Intelligence Empowered Metaverse: Architecture, Technologies, and Open Issues</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Yanan ; Feng, Daquan ; Zhao, Mingxiong ; Sun, Yao ; Xia, Xiang-Gen</creator><creatorcontrib>Xu, Yanan ; Feng, Daquan ; Zhao, Mingxiong ; Sun, Yao ; Xia, Xiang-Gen</creatorcontrib><description>Recently, the metaverse has emerged as a focal point of widespread interest, capturing attention across various domains. However, the construction of a pluralistic, realistic, and shared digital world is still in its infancy. Due to the ultra-strict requirements in security, intelligence, and real-time, it is urgent to solve the technical challenges existed in building metaverse ecosystems, such as ensuring the provision of seamless communication and reliable computing services in the face of a dynamic and time-varying complex network environment. In terms of digital infrastructure, edge computing (EC), as a distributed computing paradigm, has the potential to guarantee computing power, bandwidth, and storage. Meanwhile, artificial intelligence (AI) is regarded as a powerful tool to provide technical support for automated and efficient decision-making for metaverse devices. In this context, this paper focuses on integrating EC and AI to facilitate the development of the metaverse, namely, the edge intelligence-empowered metaverse. Specifically, we first outline the metaverse architecture and driving technologies and discuss EC as a key component of the digital infrastructure for metaverse realization. Then, we elaborate on two mainstream classifications of edge intelligence in metaverse scenarios, including AI for edge and AI on edge. Finally, we identify some open issues.</description><identifier>ISSN: 0890-8044</identifier><identifier>EISSN: 1558-156X</identifier><identifier>DOI: 10.1109/MNET.2023.3317477</identifier><identifier>CODEN: IENEET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Cloud computing ; Computer architecture ; Computer networks ; Distributed processing ; Edge computing ; Infrastructure ; Internet of Things ; Metaverse ; Production ; Rendering (computer graphics)</subject><ispartof>IEEE network, 2023-11, Vol.37 (6), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-34dfddd3d862da12cdd223fca27afef05ea9ba7fd24a8adbab86accccc339aca3</cites><orcidid>0000-0001-9499-5456 ; 0000-0002-5599-7683 ; 0000-0002-0667-1150 ; 0000-0002-5767-5020 ; 0000-0002-4391-377X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10273380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10273380$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Yanan</creatorcontrib><creatorcontrib>Feng, Daquan</creatorcontrib><creatorcontrib>Zhao, Mingxiong</creatorcontrib><creatorcontrib>Sun, Yao</creatorcontrib><creatorcontrib>Xia, Xiang-Gen</creatorcontrib><title>Edge Intelligence Empowered Metaverse: Architecture, Technologies, and Open Issues</title><title>IEEE network</title><addtitle>NET-M</addtitle><description>Recently, the metaverse has emerged as a focal point of widespread interest, capturing attention across various domains. However, the construction of a pluralistic, realistic, and shared digital world is still in its infancy. Due to the ultra-strict requirements in security, intelligence, and real-time, it is urgent to solve the technical challenges existed in building metaverse ecosystems, such as ensuring the provision of seamless communication and reliable computing services in the face of a dynamic and time-varying complex network environment. In terms of digital infrastructure, edge computing (EC), as a distributed computing paradigm, has the potential to guarantee computing power, bandwidth, and storage. Meanwhile, artificial intelligence (AI) is regarded as a powerful tool to provide technical support for automated and efficient decision-making for metaverse devices. In this context, this paper focuses on integrating EC and AI to facilitate the development of the metaverse, namely, the edge intelligence-empowered metaverse. Specifically, we first outline the metaverse architecture and driving technologies and discuss EC as a key component of the digital infrastructure for metaverse realization. Then, we elaborate on two mainstream classifications of edge intelligence in metaverse scenarios, including AI for edge and AI on edge. Finally, we identify some open issues.</description><subject>Artificial intelligence</subject><subject>Cloud computing</subject><subject>Computer architecture</subject><subject>Computer networks</subject><subject>Distributed processing</subject><subject>Edge computing</subject><subject>Infrastructure</subject><subject>Internet of Things</subject><subject>Metaverse</subject><subject>Production</subject><subject>Rendering (computer graphics)</subject><issn>0890-8044</issn><issn>1558-156X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AURQdRsFZ_gOBiwG1T5yPJJO5KiVpoLUgFd8PrzEubkiZxJrX4701oF77N25x7LxxC7jkbc87Sp8V7thoLJuRYSq5CpS7IgEdREvAo_rokA5akLEhYGF6TG-93jPEwkmJAPjK7QTqrWizLYoOVQZrtm_qIDi1dYAs_6Dw-04kz26JF0x4cjugKzbaqy3pToB9RqCxdNljRmfcH9LfkKofS4935D8nnS7aavgXz5etsOpkHRoRxG8jQ5tZaaZNYWODCWCuEzA0IBTnmLEJI16ByK0JIwK5hncRg-pMyBQNySB5PvY2rv7vdVu_qg6u6SS0Zj5hIY6U6ip8o42rvHea6ccUe3K_mTPfqdK9O9-r0WV2XeThlCkT8xwslZcLkH-9RbMs</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Xu, Yanan</creator><creator>Feng, Daquan</creator><creator>Zhao, Mingxiong</creator><creator>Sun, Yao</creator><creator>Xia, Xiang-Gen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9499-5456</orcidid><orcidid>https://orcid.org/0000-0002-5599-7683</orcidid><orcidid>https://orcid.org/0000-0002-0667-1150</orcidid><orcidid>https://orcid.org/0000-0002-5767-5020</orcidid><orcidid>https://orcid.org/0000-0002-4391-377X</orcidid></search><sort><creationdate>20231101</creationdate><title>Edge Intelligence Empowered Metaverse: Architecture, Technologies, and Open Issues</title><author>Xu, Yanan ; Feng, Daquan ; Zhao, Mingxiong ; Sun, Yao ; Xia, Xiang-Gen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-34dfddd3d862da12cdd223fca27afef05ea9ba7fd24a8adbab86accccc339aca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Cloud computing</topic><topic>Computer architecture</topic><topic>Computer networks</topic><topic>Distributed processing</topic><topic>Edge computing</topic><topic>Infrastructure</topic><topic>Internet of Things</topic><topic>Metaverse</topic><topic>Production</topic><topic>Rendering (computer graphics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yanan</creatorcontrib><creatorcontrib>Feng, Daquan</creatorcontrib><creatorcontrib>Zhao, Mingxiong</creatorcontrib><creatorcontrib>Sun, Yao</creatorcontrib><creatorcontrib>Xia, Xiang-Gen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE network</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Yanan</au><au>Feng, Daquan</au><au>Zhao, Mingxiong</au><au>Sun, Yao</au><au>Xia, Xiang-Gen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Intelligence Empowered Metaverse: Architecture, Technologies, and Open Issues</atitle><jtitle>IEEE network</jtitle><stitle>NET-M</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>37</volume><issue>6</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0890-8044</issn><eissn>1558-156X</eissn><coden>IENEET</coden><abstract>Recently, the metaverse has emerged as a focal point of widespread interest, capturing attention across various domains. However, the construction of a pluralistic, realistic, and shared digital world is still in its infancy. Due to the ultra-strict requirements in security, intelligence, and real-time, it is urgent to solve the technical challenges existed in building metaverse ecosystems, such as ensuring the provision of seamless communication and reliable computing services in the face of a dynamic and time-varying complex network environment. In terms of digital infrastructure, edge computing (EC), as a distributed computing paradigm, has the potential to guarantee computing power, bandwidth, and storage. Meanwhile, artificial intelligence (AI) is regarded as a powerful tool to provide technical support for automated and efficient decision-making for metaverse devices. In this context, this paper focuses on integrating EC and AI to facilitate the development of the metaverse, namely, the edge intelligence-empowered metaverse. Specifically, we first outline the metaverse architecture and driving technologies and discuss EC as a key component of the digital infrastructure for metaverse realization. Then, we elaborate on two mainstream classifications of edge intelligence in metaverse scenarios, including AI for edge and AI on edge. Finally, we identify some open issues.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MNET.2023.3317477</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9499-5456</orcidid><orcidid>https://orcid.org/0000-0002-5599-7683</orcidid><orcidid>https://orcid.org/0000-0002-0667-1150</orcidid><orcidid>https://orcid.org/0000-0002-5767-5020</orcidid><orcidid>https://orcid.org/0000-0002-4391-377X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0890-8044
ispartof IEEE network, 2023-11, Vol.37 (6), p.1-1
issn 0890-8044
1558-156X
language eng
recordid cdi_crossref_primary_10_1109_MNET_2023_3317477
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Cloud computing
Computer architecture
Computer networks
Distributed processing
Edge computing
Infrastructure
Internet of Things
Metaverse
Production
Rendering (computer graphics)
title Edge Intelligence Empowered Metaverse: Architecture, Technologies, and Open Issues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Intelligence%20Empowered%20Metaverse:%20Architecture,%20Technologies,%20and%20Open%20Issues&rft.jtitle=IEEE%20network&rft.au=Xu,%20Yanan&rft.date=2023-11-01&rft.volume=37&rft.issue=6&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0890-8044&rft.eissn=1558-156X&rft.coden=IENEET&rft_id=info:doi/10.1109/MNET.2023.3317477&rft_dat=%3Cproquest_RIE%3E3015029677%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3015029677&rft_id=info:pmid/&rft_ieee_id=10273380&rfr_iscdi=true