Toward Secure Crowd Sensing in Vehicle-to-Everything Networks

V2X communication facilitates information sharing between a vehicle and the infrastructure, pedestrians, devices, or any other entity that may affect the vehicle, which is known as a critical component in 5G that promises to realize the vision of connected and autonomous vehicles. Crowd sensing, a.k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE network 2018-03, Vol.32 (2), p.126-131
Hauptverfasser: Bian, Kaigui, Zhang, Gaoxiang, Song, Lingyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 2
container_start_page 126
container_title IEEE network
container_volume 32
creator Bian, Kaigui
Zhang, Gaoxiang
Song, Lingyang
description V2X communication facilitates information sharing between a vehicle and the infrastructure, pedestrians, devices, or any other entity that may affect the vehicle, which is known as a critical component in 5G that promises to realize the vision of connected and autonomous vehicles. Crowd sensing, a.k.a. collective perception, is one of the essential concepts of V2X networks, where vehicles share their information collected by local perception sensors about the environment for improving safety, saving energy, optimizing traffic, and so on. Although the operational aspects of V2X networks are being studied actively, its security aspect has received little attention. In this article, we discuss security issues that may pose serious threats to crowd sensing in V2X networks, and we focus on V2X-specific threats that are unique in V2X networks, e.g. platoon disruption and perception data falsification. We also discuss countermeasures against these threats and the technical challenges that must be overcome to implement such methods.
doi_str_mv 10.1109/MNET.2017.1700098
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MNET_2017_1700098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8121865</ieee_id><sourcerecordid>2022043526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-16e61a948fd579f92e9b3773637830948e422101a69f91a56b48baf78bccb1723</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFb_APES8Jw6s5v9OniQUj-g1oNVvC1JOrGpNam7iaX_vQktnoaZ9948-DF2iTBCBHvzPJvMRxxQj1ADgDVHbIBSmhil-jhmAzAWYgNJcsrOQlgBYCIFH7Dbeb1N_SJ6pbz1FI19ve2XKpTVZ1RW0Tsty3xNcVPHk1_yu2bZCzNqtrX_CufspEjXgS4Oc8je7ifz8WM8fXl4Gt9N41xI28SoSGFqE1MspLaF5WQzobVQQhsB3Z0SzhEwVZ2IqVRZYrK00CbL8ww1F0N2vf-78fVPS6Fxq7r1VVfpOHAOiZBcdS7cu3Jfh-CpcBtffqd-5xBcT8n1lFxPyR0odZmrfaYkon-_QY5GSfEHi69hhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022043526</pqid></control><display><type>article</type><title>Toward Secure Crowd Sensing in Vehicle-to-Everything Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Bian, Kaigui ; Zhang, Gaoxiang ; Song, Lingyang</creator><creatorcontrib>Bian, Kaigui ; Zhang, Gaoxiang ; Song, Lingyang</creatorcontrib><description>V2X communication facilitates information sharing between a vehicle and the infrastructure, pedestrians, devices, or any other entity that may affect the vehicle, which is known as a critical component in 5G that promises to realize the vision of connected and autonomous vehicles. Crowd sensing, a.k.a. collective perception, is one of the essential concepts of V2X networks, where vehicles share their information collected by local perception sensors about the environment for improving safety, saving energy, optimizing traffic, and so on. Although the operational aspects of V2X networks are being studied actively, its security aspect has received little attention. In this article, we discuss security issues that may pose serious threats to crowd sensing in V2X networks, and we focus on V2X-specific threats that are unique in V2X networks, e.g. platoon disruption and perception data falsification. We also discuss countermeasures against these threats and the technical challenges that must be overcome to implement such methods.</description><identifier>ISSN: 0890-8044</identifier><identifier>EISSN: 1558-156X</identifier><identifier>DOI: 10.1109/MNET.2017.1700098</identifier><identifier>CODEN: IENEET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3GPP ; Automobiles ; Critical components ; Detection ; Energy conservation ; Environmental engineering ; Information management ; Lead ; Networks ; Pedestrians ; Perception ; Security ; Sensors ; Taxonomy ; Traffic safety ; Vehicles</subject><ispartof>IEEE network, 2018-03, Vol.32 (2), p.126-131</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-16e61a948fd579f92e9b3773637830948e422101a69f91a56b48baf78bccb1723</citedby><cites>FETCH-LOGICAL-c359t-16e61a948fd579f92e9b3773637830948e422101a69f91a56b48baf78bccb1723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8121865$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8121865$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bian, Kaigui</creatorcontrib><creatorcontrib>Zhang, Gaoxiang</creatorcontrib><creatorcontrib>Song, Lingyang</creatorcontrib><title>Toward Secure Crowd Sensing in Vehicle-to-Everything Networks</title><title>IEEE network</title><addtitle>NET-M</addtitle><description>V2X communication facilitates information sharing between a vehicle and the infrastructure, pedestrians, devices, or any other entity that may affect the vehicle, which is known as a critical component in 5G that promises to realize the vision of connected and autonomous vehicles. Crowd sensing, a.k.a. collective perception, is one of the essential concepts of V2X networks, where vehicles share their information collected by local perception sensors about the environment for improving safety, saving energy, optimizing traffic, and so on. Although the operational aspects of V2X networks are being studied actively, its security aspect has received little attention. In this article, we discuss security issues that may pose serious threats to crowd sensing in V2X networks, and we focus on V2X-specific threats that are unique in V2X networks, e.g. platoon disruption and perception data falsification. We also discuss countermeasures against these threats and the technical challenges that must be overcome to implement such methods.</description><subject>3GPP</subject><subject>Automobiles</subject><subject>Critical components</subject><subject>Detection</subject><subject>Energy conservation</subject><subject>Environmental engineering</subject><subject>Information management</subject><subject>Lead</subject><subject>Networks</subject><subject>Pedestrians</subject><subject>Perception</subject><subject>Security</subject><subject>Sensors</subject><subject>Taxonomy</subject><subject>Traffic safety</subject><subject>Vehicles</subject><issn>0890-8044</issn><issn>1558-156X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFb_APES8Jw6s5v9OniQUj-g1oNVvC1JOrGpNam7iaX_vQktnoaZ9948-DF2iTBCBHvzPJvMRxxQj1ADgDVHbIBSmhil-jhmAzAWYgNJcsrOQlgBYCIFH7Dbeb1N_SJ6pbz1FI19ve2XKpTVZ1RW0Tsty3xNcVPHk1_yu2bZCzNqtrX_CufspEjXgS4Oc8je7ifz8WM8fXl4Gt9N41xI28SoSGFqE1MspLaF5WQzobVQQhsB3Z0SzhEwVZ2IqVRZYrK00CbL8ww1F0N2vf-78fVPS6Fxq7r1VVfpOHAOiZBcdS7cu3Jfh-CpcBtffqd-5xBcT8n1lFxPyR0odZmrfaYkon-_QY5GSfEHi69hhQ</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Bian, Kaigui</creator><creator>Zhang, Gaoxiang</creator><creator>Song, Lingyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180301</creationdate><title>Toward Secure Crowd Sensing in Vehicle-to-Everything Networks</title><author>Bian, Kaigui ; Zhang, Gaoxiang ; Song, Lingyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-16e61a948fd579f92e9b3773637830948e422101a69f91a56b48baf78bccb1723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3GPP</topic><topic>Automobiles</topic><topic>Critical components</topic><topic>Detection</topic><topic>Energy conservation</topic><topic>Environmental engineering</topic><topic>Information management</topic><topic>Lead</topic><topic>Networks</topic><topic>Pedestrians</topic><topic>Perception</topic><topic>Security</topic><topic>Sensors</topic><topic>Taxonomy</topic><topic>Traffic safety</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Kaigui</creatorcontrib><creatorcontrib>Zhang, Gaoxiang</creatorcontrib><creatorcontrib>Song, Lingyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE network</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bian, Kaigui</au><au>Zhang, Gaoxiang</au><au>Song, Lingyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Secure Crowd Sensing in Vehicle-to-Everything Networks</atitle><jtitle>IEEE network</jtitle><stitle>NET-M</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>32</volume><issue>2</issue><spage>126</spage><epage>131</epage><pages>126-131</pages><issn>0890-8044</issn><eissn>1558-156X</eissn><coden>IENEET</coden><abstract>V2X communication facilitates information sharing between a vehicle and the infrastructure, pedestrians, devices, or any other entity that may affect the vehicle, which is known as a critical component in 5G that promises to realize the vision of connected and autonomous vehicles. Crowd sensing, a.k.a. collective perception, is one of the essential concepts of V2X networks, where vehicles share their information collected by local perception sensors about the environment for improving safety, saving energy, optimizing traffic, and so on. Although the operational aspects of V2X networks are being studied actively, its security aspect has received little attention. In this article, we discuss security issues that may pose serious threats to crowd sensing in V2X networks, and we focus on V2X-specific threats that are unique in V2X networks, e.g. platoon disruption and perception data falsification. We also discuss countermeasures against these threats and the technical challenges that must be overcome to implement such methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MNET.2017.1700098</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0890-8044
ispartof IEEE network, 2018-03, Vol.32 (2), p.126-131
issn 0890-8044
1558-156X
language eng
recordid cdi_crossref_primary_10_1109_MNET_2017_1700098
source IEEE Electronic Library (IEL)
subjects 3GPP
Automobiles
Critical components
Detection
Energy conservation
Environmental engineering
Information management
Lead
Networks
Pedestrians
Perception
Security
Sensors
Taxonomy
Traffic safety
Vehicles
title Toward Secure Crowd Sensing in Vehicle-to-Everything Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Secure%20Crowd%20Sensing%20in%20Vehicle-to-Everything%20Networks&rft.jtitle=IEEE%20network&rft.au=Bian,%20Kaigui&rft.date=2018-03-01&rft.volume=32&rft.issue=2&rft.spage=126&rft.epage=131&rft.pages=126-131&rft.issn=0890-8044&rft.eissn=1558-156X&rft.coden=IENEET&rft_id=info:doi/10.1109/MNET.2017.1700098&rft_dat=%3Cproquest_RIE%3E2022043526%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022043526&rft_id=info:pmid/&rft_ieee_id=8121865&rfr_iscdi=true