Toward Secure Crowd Sensing in Vehicle-to-Everything Networks
V2X communication facilitates information sharing between a vehicle and the infrastructure, pedestrians, devices, or any other entity that may affect the vehicle, which is known as a critical component in 5G that promises to realize the vision of connected and autonomous vehicles. Crowd sensing, a.k...
Gespeichert in:
Veröffentlicht in: | IEEE network 2018-03, Vol.32 (2), p.126-131 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 2 |
container_start_page | 126 |
container_title | IEEE network |
container_volume | 32 |
creator | Bian, Kaigui Zhang, Gaoxiang Song, Lingyang |
description | V2X communication facilitates information sharing between a vehicle and the infrastructure, pedestrians, devices, or any other entity that may affect the vehicle, which is known as a critical component in 5G that promises to realize the vision of connected and autonomous vehicles. Crowd sensing, a.k.a. collective perception, is one of the essential concepts of V2X networks, where vehicles share their information collected by local perception sensors about the environment for improving safety, saving energy, optimizing traffic, and so on. Although the operational aspects of V2X networks are being studied actively, its security aspect has received little attention. In this article, we discuss security issues that may pose serious threats to crowd sensing in V2X networks, and we focus on V2X-specific threats that are unique in V2X networks, e.g. platoon disruption and perception data falsification. We also discuss countermeasures against these threats and the technical challenges that must be overcome to implement such methods. |
doi_str_mv | 10.1109/MNET.2017.1700098 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MNET_2017_1700098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8121865</ieee_id><sourcerecordid>2022043526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-16e61a948fd579f92e9b3773637830948e422101a69f91a56b48baf78bccb1723</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFb_APES8Jw6s5v9OniQUj-g1oNVvC1JOrGpNam7iaX_vQktnoaZ9948-DF2iTBCBHvzPJvMRxxQj1ADgDVHbIBSmhil-jhmAzAWYgNJcsrOQlgBYCIFH7Dbeb1N_SJ6pbz1FI19ve2XKpTVZ1RW0Tsty3xNcVPHk1_yu2bZCzNqtrX_CufspEjXgS4Oc8je7ifz8WM8fXl4Gt9N41xI28SoSGFqE1MspLaF5WQzobVQQhsB3Z0SzhEwVZ2IqVRZYrK00CbL8ww1F0N2vf-78fVPS6Fxq7r1VVfpOHAOiZBcdS7cu3Jfh-CpcBtffqd-5xBcT8n1lFxPyR0odZmrfaYkon-_QY5GSfEHi69hhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022043526</pqid></control><display><type>article</type><title>Toward Secure Crowd Sensing in Vehicle-to-Everything Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Bian, Kaigui ; Zhang, Gaoxiang ; Song, Lingyang</creator><creatorcontrib>Bian, Kaigui ; Zhang, Gaoxiang ; Song, Lingyang</creatorcontrib><description>V2X communication facilitates information sharing between a vehicle and the infrastructure, pedestrians, devices, or any other entity that may affect the vehicle, which is known as a critical component in 5G that promises to realize the vision of connected and autonomous vehicles. Crowd sensing, a.k.a. collective perception, is one of the essential concepts of V2X networks, where vehicles share their information collected by local perception sensors about the environment for improving safety, saving energy, optimizing traffic, and so on. Although the operational aspects of V2X networks are being studied actively, its security aspect has received little attention. In this article, we discuss security issues that may pose serious threats to crowd sensing in V2X networks, and we focus on V2X-specific threats that are unique in V2X networks, e.g. platoon disruption and perception data falsification. We also discuss countermeasures against these threats and the technical challenges that must be overcome to implement such methods.</description><identifier>ISSN: 0890-8044</identifier><identifier>EISSN: 1558-156X</identifier><identifier>DOI: 10.1109/MNET.2017.1700098</identifier><identifier>CODEN: IENEET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3GPP ; Automobiles ; Critical components ; Detection ; Energy conservation ; Environmental engineering ; Information management ; Lead ; Networks ; Pedestrians ; Perception ; Security ; Sensors ; Taxonomy ; Traffic safety ; Vehicles</subject><ispartof>IEEE network, 2018-03, Vol.32 (2), p.126-131</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-16e61a948fd579f92e9b3773637830948e422101a69f91a56b48baf78bccb1723</citedby><cites>FETCH-LOGICAL-c359t-16e61a948fd579f92e9b3773637830948e422101a69f91a56b48baf78bccb1723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8121865$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8121865$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bian, Kaigui</creatorcontrib><creatorcontrib>Zhang, Gaoxiang</creatorcontrib><creatorcontrib>Song, Lingyang</creatorcontrib><title>Toward Secure Crowd Sensing in Vehicle-to-Everything Networks</title><title>IEEE network</title><addtitle>NET-M</addtitle><description>V2X communication facilitates information sharing between a vehicle and the infrastructure, pedestrians, devices, or any other entity that may affect the vehicle, which is known as a critical component in 5G that promises to realize the vision of connected and autonomous vehicles. Crowd sensing, a.k.a. collective perception, is one of the essential concepts of V2X networks, where vehicles share their information collected by local perception sensors about the environment for improving safety, saving energy, optimizing traffic, and so on. Although the operational aspects of V2X networks are being studied actively, its security aspect has received little attention. In this article, we discuss security issues that may pose serious threats to crowd sensing in V2X networks, and we focus on V2X-specific threats that are unique in V2X networks, e.g. platoon disruption and perception data falsification. We also discuss countermeasures against these threats and the technical challenges that must be overcome to implement such methods.</description><subject>3GPP</subject><subject>Automobiles</subject><subject>Critical components</subject><subject>Detection</subject><subject>Energy conservation</subject><subject>Environmental engineering</subject><subject>Information management</subject><subject>Lead</subject><subject>Networks</subject><subject>Pedestrians</subject><subject>Perception</subject><subject>Security</subject><subject>Sensors</subject><subject>Taxonomy</subject><subject>Traffic safety</subject><subject>Vehicles</subject><issn>0890-8044</issn><issn>1558-156X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFb_APES8Jw6s5v9OniQUj-g1oNVvC1JOrGpNam7iaX_vQktnoaZ9948-DF2iTBCBHvzPJvMRxxQj1ADgDVHbIBSmhil-jhmAzAWYgNJcsrOQlgBYCIFH7Dbeb1N_SJ6pbz1FI19ve2XKpTVZ1RW0Tsty3xNcVPHk1_yu2bZCzNqtrX_CufspEjXgS4Oc8je7ifz8WM8fXl4Gt9N41xI28SoSGFqE1MspLaF5WQzobVQQhsB3Z0SzhEwVZ2IqVRZYrK00CbL8ww1F0N2vf-78fVPS6Fxq7r1VVfpOHAOiZBcdS7cu3Jfh-CpcBtffqd-5xBcT8n1lFxPyR0odZmrfaYkon-_QY5GSfEHi69hhQ</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Bian, Kaigui</creator><creator>Zhang, Gaoxiang</creator><creator>Song, Lingyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180301</creationdate><title>Toward Secure Crowd Sensing in Vehicle-to-Everything Networks</title><author>Bian, Kaigui ; Zhang, Gaoxiang ; Song, Lingyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-16e61a948fd579f92e9b3773637830948e422101a69f91a56b48baf78bccb1723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3GPP</topic><topic>Automobiles</topic><topic>Critical components</topic><topic>Detection</topic><topic>Energy conservation</topic><topic>Environmental engineering</topic><topic>Information management</topic><topic>Lead</topic><topic>Networks</topic><topic>Pedestrians</topic><topic>Perception</topic><topic>Security</topic><topic>Sensors</topic><topic>Taxonomy</topic><topic>Traffic safety</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Kaigui</creatorcontrib><creatorcontrib>Zhang, Gaoxiang</creatorcontrib><creatorcontrib>Song, Lingyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE network</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bian, Kaigui</au><au>Zhang, Gaoxiang</au><au>Song, Lingyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Secure Crowd Sensing in Vehicle-to-Everything Networks</atitle><jtitle>IEEE network</jtitle><stitle>NET-M</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>32</volume><issue>2</issue><spage>126</spage><epage>131</epage><pages>126-131</pages><issn>0890-8044</issn><eissn>1558-156X</eissn><coden>IENEET</coden><abstract>V2X communication facilitates information sharing between a vehicle and the infrastructure, pedestrians, devices, or any other entity that may affect the vehicle, which is known as a critical component in 5G that promises to realize the vision of connected and autonomous vehicles. Crowd sensing, a.k.a. collective perception, is one of the essential concepts of V2X networks, where vehicles share their information collected by local perception sensors about the environment for improving safety, saving energy, optimizing traffic, and so on. Although the operational aspects of V2X networks are being studied actively, its security aspect has received little attention. In this article, we discuss security issues that may pose serious threats to crowd sensing in V2X networks, and we focus on V2X-specific threats that are unique in V2X networks, e.g. platoon disruption and perception data falsification. We also discuss countermeasures against these threats and the technical challenges that must be overcome to implement such methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MNET.2017.1700098</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0890-8044 |
ispartof | IEEE network, 2018-03, Vol.32 (2), p.126-131 |
issn | 0890-8044 1558-156X |
language | eng |
recordid | cdi_crossref_primary_10_1109_MNET_2017_1700098 |
source | IEEE Electronic Library (IEL) |
subjects | 3GPP Automobiles Critical components Detection Energy conservation Environmental engineering Information management Lead Networks Pedestrians Perception Security Sensors Taxonomy Traffic safety Vehicles |
title | Toward Secure Crowd Sensing in Vehicle-to-Everything Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Secure%20Crowd%20Sensing%20in%20Vehicle-to-Everything%20Networks&rft.jtitle=IEEE%20network&rft.au=Bian,%20Kaigui&rft.date=2018-03-01&rft.volume=32&rft.issue=2&rft.spage=126&rft.epage=131&rft.pages=126-131&rft.issn=0890-8044&rft.eissn=1558-156X&rft.coden=IENEET&rft_id=info:doi/10.1109/MNET.2017.1700098&rft_dat=%3Cproquest_RIE%3E2022043526%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022043526&rft_id=info:pmid/&rft_ieee_id=8121865&rfr_iscdi=true |