Mixed-Signal Approximate Computation: A Neural Predictor Case Study
As transistors shrink and processors trend toward low power, maintaining precise digital behavior grows more expensive. Replacing digital units with analog equivalents sometimes allows similar computation to be performed at higher speed using less power. As a case study in mixed-signal approximate c...
Gespeichert in:
Veröffentlicht in: | IEEE MICRO 2009-01, Vol.29 (1), p.104-115 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As transistors shrink and processors trend toward low power, maintaining precise digital behavior grows more expensive. Replacing digital units with analog equivalents sometimes allows similar computation to be performed at higher speed using less power. As a case study in mixed-signal approximate computation, the authors describe an enhanced neural prediction algorithm and its efficient analog implementation. |
---|---|
ISSN: | 0272-1732 1937-4143 |
DOI: | 10.1109/MM.2009.10 |