An Automatic and Intelligent Internet of Things for Future Agriculture

Great advances in artificial intelligence and the Internet of Things have been made in recent years. This work develops an intelligent agricultural cultivation system to realize automated and intelligent farm cultivation management and operation. Experimental results demonstrate that the proposed sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IT professional 2022-11, Vol.24 (6), p.74-80
Hauptverfasser: Ma, Yi-Wei, Chen, Jiann-Liang, Shih, Ching-Chiu, Dabirian, Amir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 6
container_start_page 74
container_title IT professional
container_volume 24
creator Ma, Yi-Wei
Chen, Jiann-Liang
Shih, Ching-Chiu
Dabirian, Amir
description Great advances in artificial intelligence and the Internet of Things have been made in recent years. This work develops an intelligent agricultural cultivation system to realize automated and intelligent farm cultivation management and operation. Experimental results demonstrate that the proposed system reduces water consumption by 50% and 30%, respectively, below those of fixed and threshold irrigation methods and predicts more accurately the amount of irrigation water required. The proposed dynamic detection transmission mechanism performs 97.8% fewer communications than are performed in timing transmission mode, effectively reducing overall energy consumption for transmission. Experimental results show that the proposed system reduces cultivation time by 40.94% below that required by the traditional cultivation method, and supports more effective management. Based on all of the experimental results, the proposed method supports convenient cultivation for growers.
doi_str_mv 10.1109/MITP.2022.3205707
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MITP_2022_3205707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10017412</ieee_id><sourcerecordid>2766632131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-49c150f557ff957279f2e173e24c96396990f205dbfa75bab04f35c2788583183</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqXwA5AYLDGn3PkjjseoolAJBEOR2KzUtUuq1CmOM_DvSWgHpnuH5707PYTcIswQQT-8LlfvMwaMzTgDqUCdkQlqgRkI-Xk-ZMkg0wNwSa66bgeAuRDFhCzKQMs-tfsq1ZZWYUOXIbmmqbcupL8cg0u09XT1VYdtR30b6aJPfXS03Mba9s2Yr8mFr5rO3ZzmlHwsHlfz5-zl7Wk5L18yy5hImdAWJXgplfdaKqa0Zw4Vd0xYnXOdaw1--H-z9pWS62oNwnNpmSoKWXAs-JTcH_ceYvvduy6ZXdvHMJw0TOV5zhlyHCg8Uja2XRedN4dY76v4YxDMqMuMusyoy5x0DZ27Y6d2zv3jAZVAxn8B9vFkug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766632131</pqid></control><display><type>article</type><title>An Automatic and Intelligent Internet of Things for Future Agriculture</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Yi-Wei ; Chen, Jiann-Liang ; Shih, Ching-Chiu ; Dabirian, Amir</creator><contributor>Amir Dabirian</contributor><creatorcontrib>Ma, Yi-Wei ; Chen, Jiann-Liang ; Shih, Ching-Chiu ; Dabirian, Amir ; Amir Dabirian</creatorcontrib><description>Great advances in artificial intelligence and the Internet of Things have been made in recent years. This work develops an intelligent agricultural cultivation system to realize automated and intelligent farm cultivation management and operation. Experimental results demonstrate that the proposed system reduces water consumption by 50% and 30%, respectively, below those of fixed and threshold irrigation methods and predicts more accurately the amount of irrigation water required. The proposed dynamic detection transmission mechanism performs 97.8% fewer communications than are performed in timing transmission mode, effectively reducing overall energy consumption for transmission. Experimental results show that the proposed system reduces cultivation time by 40.94% below that required by the traditional cultivation method, and supports more effective management. Based on all of the experimental results, the proposed method supports convenient cultivation for growers.</description><identifier>ISSN: 1520-9202</identifier><identifier>EISSN: 1941-045X</identifier><identifier>DOI: 10.1109/MITP.2022.3205707</identifier><identifier>CODEN: IPMAFM</identifier><language>eng</language><publisher>Washington: IEEE</publisher><subject>Artificial intelligence ; Crops ; Cultivation ; Data collection ; Energy consumption ; Farms ; Internet of Things ; Irrigation ; Irrigation water ; Machine learning ; Smart agriculture ; Water consumption</subject><ispartof>IT professional, 2022-11, Vol.24 (6), p.74-80</ispartof><rights>Copyright IEEE Computer Society 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-49c150f557ff957279f2e173e24c96396990f205dbfa75bab04f35c2788583183</citedby><cites>FETCH-LOGICAL-c224t-49c150f557ff957279f2e173e24c96396990f205dbfa75bab04f35c2788583183</cites><orcidid>0000-0002-3279-6918 ; 0000-0003-0400-5514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10017412$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10017412$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><contributor>Amir Dabirian</contributor><creatorcontrib>Ma, Yi-Wei</creatorcontrib><creatorcontrib>Chen, Jiann-Liang</creatorcontrib><creatorcontrib>Shih, Ching-Chiu</creatorcontrib><creatorcontrib>Dabirian, Amir</creatorcontrib><title>An Automatic and Intelligent Internet of Things for Future Agriculture</title><title>IT professional</title><addtitle>ITP-M</addtitle><description>Great advances in artificial intelligence and the Internet of Things have been made in recent years. This work develops an intelligent agricultural cultivation system to realize automated and intelligent farm cultivation management and operation. Experimental results demonstrate that the proposed system reduces water consumption by 50% and 30%, respectively, below those of fixed and threshold irrigation methods and predicts more accurately the amount of irrigation water required. The proposed dynamic detection transmission mechanism performs 97.8% fewer communications than are performed in timing transmission mode, effectively reducing overall energy consumption for transmission. Experimental results show that the proposed system reduces cultivation time by 40.94% below that required by the traditional cultivation method, and supports more effective management. Based on all of the experimental results, the proposed method supports convenient cultivation for growers.</description><subject>Artificial intelligence</subject><subject>Crops</subject><subject>Cultivation</subject><subject>Data collection</subject><subject>Energy consumption</subject><subject>Farms</subject><subject>Internet of Things</subject><subject>Irrigation</subject><subject>Irrigation water</subject><subject>Machine learning</subject><subject>Smart agriculture</subject><subject>Water consumption</subject><issn>1520-9202</issn><issn>1941-045X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqXwA5AYLDGn3PkjjseoolAJBEOR2KzUtUuq1CmOM_DvSWgHpnuH5707PYTcIswQQT-8LlfvMwaMzTgDqUCdkQlqgRkI-Xk-ZMkg0wNwSa66bgeAuRDFhCzKQMs-tfsq1ZZWYUOXIbmmqbcupL8cg0u09XT1VYdtR30b6aJPfXS03Mba9s2Yr8mFr5rO3ZzmlHwsHlfz5-zl7Wk5L18yy5hImdAWJXgplfdaKqa0Zw4Vd0xYnXOdaw1--H-z9pWS62oNwnNpmSoKWXAs-JTcH_ceYvvduy6ZXdvHMJw0TOV5zhlyHCg8Uja2XRedN4dY76v4YxDMqMuMusyoy5x0DZ27Y6d2zv3jAZVAxn8B9vFkug</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Ma, Yi-Wei</creator><creator>Chen, Jiann-Liang</creator><creator>Shih, Ching-Chiu</creator><creator>Dabirian, Amir</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-3279-6918</orcidid><orcidid>https://orcid.org/0000-0003-0400-5514</orcidid></search><sort><creationdate>20221101</creationdate><title>An Automatic and Intelligent Internet of Things for Future Agriculture</title><author>Ma, Yi-Wei ; Chen, Jiann-Liang ; Shih, Ching-Chiu ; Dabirian, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-49c150f557ff957279f2e173e24c96396990f205dbfa75bab04f35c2788583183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Crops</topic><topic>Cultivation</topic><topic>Data collection</topic><topic>Energy consumption</topic><topic>Farms</topic><topic>Internet of Things</topic><topic>Irrigation</topic><topic>Irrigation water</topic><topic>Machine learning</topic><topic>Smart agriculture</topic><topic>Water consumption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yi-Wei</creatorcontrib><creatorcontrib>Chen, Jiann-Liang</creatorcontrib><creatorcontrib>Shih, Ching-Chiu</creatorcontrib><creatorcontrib>Dabirian, Amir</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IT professional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Yi-Wei</au><au>Chen, Jiann-Liang</au><au>Shih, Ching-Chiu</au><au>Dabirian, Amir</au><au>Amir Dabirian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Automatic and Intelligent Internet of Things for Future Agriculture</atitle><jtitle>IT professional</jtitle><stitle>ITP-M</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>24</volume><issue>6</issue><spage>74</spage><epage>80</epage><pages>74-80</pages><issn>1520-9202</issn><eissn>1941-045X</eissn><coden>IPMAFM</coden><abstract>Great advances in artificial intelligence and the Internet of Things have been made in recent years. This work develops an intelligent agricultural cultivation system to realize automated and intelligent farm cultivation management and operation. Experimental results demonstrate that the proposed system reduces water consumption by 50% and 30%, respectively, below those of fixed and threshold irrigation methods and predicts more accurately the amount of irrigation water required. The proposed dynamic detection transmission mechanism performs 97.8% fewer communications than are performed in timing transmission mode, effectively reducing overall energy consumption for transmission. Experimental results show that the proposed system reduces cultivation time by 40.94% below that required by the traditional cultivation method, and supports more effective management. Based on all of the experimental results, the proposed method supports convenient cultivation for growers.</abstract><cop>Washington</cop><pub>IEEE</pub><doi>10.1109/MITP.2022.3205707</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3279-6918</orcidid><orcidid>https://orcid.org/0000-0003-0400-5514</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9202
ispartof IT professional, 2022-11, Vol.24 (6), p.74-80
issn 1520-9202
1941-045X
language eng
recordid cdi_crossref_primary_10_1109_MITP_2022_3205707
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Crops
Cultivation
Data collection
Energy consumption
Farms
Internet of Things
Irrigation
Irrigation water
Machine learning
Smart agriculture
Water consumption
title An Automatic and Intelligent Internet of Things for Future Agriculture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Automatic%20and%20Intelligent%20Internet%20of%20Things%20for%20Future%20Agriculture&rft.jtitle=IT%20professional&rft.au=Ma,%20Yi-Wei&rft.date=2022-11-01&rft.volume=24&rft.issue=6&rft.spage=74&rft.epage=80&rft.pages=74-80&rft.issn=1520-9202&rft.eissn=1941-045X&rft.coden=IPMAFM&rft_id=info:doi/10.1109/MITP.2022.3205707&rft_dat=%3Cproquest_RIE%3E2766632131%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766632131&rft_id=info:pmid/&rft_ieee_id=10017412&rfr_iscdi=true