Few-Shot Object Detection Based on Self-Knowledge Distillation
In many fields, due to the lack of large-scale training data, the traditional object detection methods cannot complete the actual work well. The main reason is the overfitting problem and lack of the generalization ability. In this work, we propose a general method to alleviate the overfitting probl...
Gespeichert in:
Veröffentlicht in: | IEEE intelligent systems 2024, p.1-8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE intelligent systems |
container_volume | |
creator | Li, Yang Gong, Yicheng Zhang, Zhuo |
description | In many fields, due to the lack of large-scale training data, the traditional object detection methods cannot complete the actual work well. The main reason is the overfitting problem and lack of the generalization ability. In this work, we propose a general method to alleviate the overfitting problem in the few-shot object detection. Our work extends Faster R-CNN with self-knowledge distillation algorithm and designs the loss function with attention mechanism, which can improve true detection in the foreground. In this way, object detector can learn an approximate mapping relationship from few samples, which makes the network possess a stronger generalization ability when tackling few images. Through numerous comparative experiments, we demonstrate that our method is general and feasible on VOC and COCO benchmarks datasets with different settings. We provide a new idea for solving the problem of few-shot object detection, and produce an excellent performance of recall rate on few-shot object detection. |
doi_str_mv | 10.1109/MIS.2022.3205686 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MIS_2022_3205686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9887857</ieee_id><sourcerecordid>10_1109_MIS_2022_3205686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c178t-2330e278828735ec65509817dfa68e8dc8652a6aef76773bfcaf7d3343664be63</originalsourceid><addsrcrecordid>eNo9j81Kw0AYRQdRsFb3gpu8wMT5ycx82QjaHy1t6SK6HiaTbzQlNpIJFN_ehBZX9yzuvXAIuecs5Zzlj9tVkQomRCoFUxr0BZnwPOOUizy7HFiNrI24Jjcx7hkTknGYkKclHmnx1fbJrtyj75M59kPU7SF5cRGrZIACm0DXh_bYYPWJybyOfd00bizdkqvgmoh355ySj-XiffZGN7vX1ex5Qz030FMhJUNhAAQYqdBrpVgO3FTBaUCoPGglnHYYjDZGlsG7YCopM6l1VqKWU8JOv75rY-ww2J-u_nbdr-XMjv528Lejvz37D5OH06RGxP96DmBAGfkH9BRVfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Few-Shot Object Detection Based on Self-Knowledge Distillation</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yang ; Gong, Yicheng ; Zhang, Zhuo</creator><creatorcontrib>Li, Yang ; Gong, Yicheng ; Zhang, Zhuo</creatorcontrib><description>In many fields, due to the lack of large-scale training data, the traditional object detection methods cannot complete the actual work well. The main reason is the overfitting problem and lack of the generalization ability. In this work, we propose a general method to alleviate the overfitting problem in the few-shot object detection. Our work extends Faster R-CNN with self-knowledge distillation algorithm and designs the loss function with attention mechanism, which can improve true detection in the foreground. In this way, object detector can learn an approximate mapping relationship from few samples, which makes the network possess a stronger generalization ability when tackling few images. Through numerous comparative experiments, we demonstrate that our method is general and feasible on VOC and COCO benchmarks datasets with different settings. We provide a new idea for solving the problem of few-shot object detection, and produce an excellent performance of recall rate on few-shot object detection.</description><identifier>ISSN: 1541-1672</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2022.3205686</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Intelligent systems ; Knowledge transfer ; Object detection ; Task analysis ; Training ; Training data ; Transfer learning</subject><ispartof>IEEE intelligent systems, 2024, p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c178t-2330e278828735ec65509817dfa68e8dc8652a6aef76773bfcaf7d3343664be63</citedby><orcidid>0000-0002-3946-0720 ; 0000-0002-4268-4004 ; 0000-0002-4016-6633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9887857$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9887857$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Gong, Yicheng</creatorcontrib><creatorcontrib>Zhang, Zhuo</creatorcontrib><title>Few-Shot Object Detection Based on Self-Knowledge Distillation</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>In many fields, due to the lack of large-scale training data, the traditional object detection methods cannot complete the actual work well. The main reason is the overfitting problem and lack of the generalization ability. In this work, we propose a general method to alleviate the overfitting problem in the few-shot object detection. Our work extends Faster R-CNN with self-knowledge distillation algorithm and designs the loss function with attention mechanism, which can improve true detection in the foreground. In this way, object detector can learn an approximate mapping relationship from few samples, which makes the network possess a stronger generalization ability when tackling few images. Through numerous comparative experiments, we demonstrate that our method is general and feasible on VOC and COCO benchmarks datasets with different settings. We provide a new idea for solving the problem of few-shot object detection, and produce an excellent performance of recall rate on few-shot object detection.</description><subject>Intelligent systems</subject><subject>Knowledge transfer</subject><subject>Object detection</subject><subject>Task analysis</subject><subject>Training</subject><subject>Training data</subject><subject>Transfer learning</subject><issn>1541-1672</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j81Kw0AYRQdRsFb3gpu8wMT5ycx82QjaHy1t6SK6HiaTbzQlNpIJFN_ehBZX9yzuvXAIuecs5Zzlj9tVkQomRCoFUxr0BZnwPOOUizy7HFiNrI24Jjcx7hkTknGYkKclHmnx1fbJrtyj75M59kPU7SF5cRGrZIACm0DXh_bYYPWJybyOfd00bizdkqvgmoh355ySj-XiffZGN7vX1ex5Qz030FMhJUNhAAQYqdBrpVgO3FTBaUCoPGglnHYYjDZGlsG7YCopM6l1VqKWU8JOv75rY-ww2J-u_nbdr-XMjv528Lejvz37D5OH06RGxP96DmBAGfkH9BRVfg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Yang</creator><creator>Gong, Yicheng</creator><creator>Zhang, Zhuo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3946-0720</orcidid><orcidid>https://orcid.org/0000-0002-4268-4004</orcidid><orcidid>https://orcid.org/0000-0002-4016-6633</orcidid></search><sort><creationdate>2024</creationdate><title>Few-Shot Object Detection Based on Self-Knowledge Distillation</title><author>Li, Yang ; Gong, Yicheng ; Zhang, Zhuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c178t-2330e278828735ec65509817dfa68e8dc8652a6aef76773bfcaf7d3343664be63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Intelligent systems</topic><topic>Knowledge transfer</topic><topic>Object detection</topic><topic>Task analysis</topic><topic>Training</topic><topic>Training data</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Gong, Yicheng</creatorcontrib><creatorcontrib>Zhang, Zhuo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yang</au><au>Gong, Yicheng</au><au>Zhang, Zhuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Few-Shot Object Detection Based on Self-Knowledge Distillation</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2024</date><risdate>2024</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>In many fields, due to the lack of large-scale training data, the traditional object detection methods cannot complete the actual work well. The main reason is the overfitting problem and lack of the generalization ability. In this work, we propose a general method to alleviate the overfitting problem in the few-shot object detection. Our work extends Faster R-CNN with self-knowledge distillation algorithm and designs the loss function with attention mechanism, which can improve true detection in the foreground. In this way, object detector can learn an approximate mapping relationship from few samples, which makes the network possess a stronger generalization ability when tackling few images. Through numerous comparative experiments, we demonstrate that our method is general and feasible on VOC and COCO benchmarks datasets with different settings. We provide a new idea for solving the problem of few-shot object detection, and produce an excellent performance of recall rate on few-shot object detection.</abstract><pub>IEEE</pub><doi>10.1109/MIS.2022.3205686</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3946-0720</orcidid><orcidid>https://orcid.org/0000-0002-4268-4004</orcidid><orcidid>https://orcid.org/0000-0002-4016-6633</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1541-1672 |
ispartof | IEEE intelligent systems, 2024, p.1-8 |
issn | 1541-1672 1941-1294 |
language | eng |
recordid | cdi_crossref_primary_10_1109_MIS_2022_3205686 |
source | IEEE Electronic Library (IEL) |
subjects | Intelligent systems Knowledge transfer Object detection Task analysis Training Training data Transfer learning |
title | Few-Shot Object Detection Based on Self-Knowledge Distillation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Few-Shot%20Object%20Detection%20Based%20on%20Self-Knowledge%20Distillation&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Li,%20Yang&rft.date=2024&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2022.3205686&rft_dat=%3Ccrossref_RIE%3E10_1109_MIS_2022_3205686%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9887857&rfr_iscdi=true |