Can We Explain Privacy?

Web users want to protect their privacy while sharing content online. This can be done through automated privacy assistants that are capable of taking actions by detecting privacy violations and recommending privacy settings for content that the user intends to share. While these approaches are prom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet computing 2023-07, Vol.27 (4), p.75-80
Hauptverfasser: Ayci, Gonul, Ozgur, Arzucan, Sensoy, Murat, Yolum, Pinar, Murukannaiah, Pradeep K., Singh, Munindar P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 4
container_start_page 75
container_title IEEE internet computing
container_volume 27
creator Ayci, Gonul
Ozgur, Arzucan
Sensoy, Murat
Yolum, Pinar
Murukannaiah, Pradeep K.
Singh, Munindar P.
description Web users want to protect their privacy while sharing content online. This can be done through automated privacy assistants that are capable of taking actions by detecting privacy violations and recommending privacy settings for content that the user intends to share. While these approaches are promising in terms of the accuracy of their privacy decisions, they lack the ability to explain to the end user why certain decisions are being made. In this work, we study how privacy assistants can be enhanced through explanations generated in the context of privacy decisions for the user content. We outline a methodology to create explanations of privacy decisions, discuss core challenges, and show example explanations that are generated by our approach.
doi_str_mv 10.1109/MIC.2023.3270768
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MIC_2023_3270768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10184288</ieee_id><sourcerecordid>10_1109_MIC_2023_3270768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-db7e11a8875dba3dd74720918b5380327a99d8944020c6745bc05129dbcd25fe3</originalsourceid><addsrcrecordid>eNpNjz1LA0EYhBdRMEZrLSzuD-z5vvuRfbcSOaIGIloolst-HZzEGHZFzL_3QlJYzRQzwzyMXSG0iGBvnhZdK0DIVgoDZkZHbIJWIQeUeDx6IMsNAZ6ys1o_AIBI4IRddn7dvOdm_rtZ-WHdvJThx8ft7Tk76f2q5ouDTtnb_fy1e-TL54dFd7fkUaD55imYjOiJjE7By5SMMgIsUtCSYLzirU1klQIBcWaUDhE0CptCTEL3WU4Z7Hdj-aq15N5tyvDpy9YhuB2YG8HcDswdwMbK9b4y5Jz_xZGUIJJ_ZdFGqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Can We Explain Privacy?</title><source>IEEE Electronic Library (IEL)</source><creator>Ayci, Gonul ; Ozgur, Arzucan ; Sensoy, Murat ; Yolum, Pinar ; Murukannaiah, Pradeep K. ; Singh, Munindar P.</creator><creatorcontrib>Ayci, Gonul ; Ozgur, Arzucan ; Sensoy, Murat ; Yolum, Pinar ; Murukannaiah, Pradeep K. ; Singh, Munindar P.</creatorcontrib><description>Web users want to protect their privacy while sharing content online. This can be done through automated privacy assistants that are capable of taking actions by detecting privacy violations and recommending privacy settings for content that the user intends to share. While these approaches are promising in terms of the accuracy of their privacy decisions, they lack the ability to explain to the end user why certain decisions are being made. In this work, we study how privacy assistants can be enhanced through explanations generated in the context of privacy decisions for the user content. We outline a methodology to create explanations of privacy decisions, discuss core challenges, and show example explanations that are generated by our approach.</description><identifier>ISSN: 1089-7801</identifier><identifier>EISSN: 1941-0131</identifier><identifier>DOI: 10.1109/MIC.2023.3270768</identifier><identifier>CODEN: IICOFX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Content management ; Internet ; Privacy</subject><ispartof>IEEE internet computing, 2023-07, Vol.27 (4), p.75-80</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-db7e11a8875dba3dd74720918b5380327a99d8944020c6745bc05129dbcd25fe3</cites><orcidid>0000-0001-8806-4508 ; 0000-0002-9200-8848 ; 0000-0001-8376-1056 ; 0000-0001-7848-1834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10184288$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10184288$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ayci, Gonul</creatorcontrib><creatorcontrib>Ozgur, Arzucan</creatorcontrib><creatorcontrib>Sensoy, Murat</creatorcontrib><creatorcontrib>Yolum, Pinar</creatorcontrib><creatorcontrib>Murukannaiah, Pradeep K.</creatorcontrib><creatorcontrib>Singh, Munindar P.</creatorcontrib><title>Can We Explain Privacy?</title><title>IEEE internet computing</title><addtitle>MIC</addtitle><description>Web users want to protect their privacy while sharing content online. This can be done through automated privacy assistants that are capable of taking actions by detecting privacy violations and recommending privacy settings for content that the user intends to share. While these approaches are promising in terms of the accuracy of their privacy decisions, they lack the ability to explain to the end user why certain decisions are being made. In this work, we study how privacy assistants can be enhanced through explanations generated in the context of privacy decisions for the user content. We outline a methodology to create explanations of privacy decisions, discuss core challenges, and show example explanations that are generated by our approach.</description><subject>Content management</subject><subject>Internet</subject><subject>Privacy</subject><issn>1089-7801</issn><issn>1941-0131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNjz1LA0EYhBdRMEZrLSzuD-z5vvuRfbcSOaIGIloolst-HZzEGHZFzL_3QlJYzRQzwzyMXSG0iGBvnhZdK0DIVgoDZkZHbIJWIQeUeDx6IMsNAZ6ys1o_AIBI4IRddn7dvOdm_rtZ-WHdvJThx8ft7Tk76f2q5ouDTtnb_fy1e-TL54dFd7fkUaD55imYjOiJjE7By5SMMgIsUtCSYLzirU1klQIBcWaUDhE0CptCTEL3WU4Z7Hdj-aq15N5tyvDpy9YhuB2YG8HcDswdwMbK9b4y5Jz_xZGUIJJ_ZdFGqg</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Ayci, Gonul</creator><creator>Ozgur, Arzucan</creator><creator>Sensoy, Murat</creator><creator>Yolum, Pinar</creator><creator>Murukannaiah, Pradeep K.</creator><creator>Singh, Munindar P.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8806-4508</orcidid><orcidid>https://orcid.org/0000-0002-9200-8848</orcidid><orcidid>https://orcid.org/0000-0001-8376-1056</orcidid><orcidid>https://orcid.org/0000-0001-7848-1834</orcidid></search><sort><creationdate>202307</creationdate><title>Can We Explain Privacy?</title><author>Ayci, Gonul ; Ozgur, Arzucan ; Sensoy, Murat ; Yolum, Pinar ; Murukannaiah, Pradeep K. ; Singh, Munindar P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-db7e11a8875dba3dd74720918b5380327a99d8944020c6745bc05129dbcd25fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Content management</topic><topic>Internet</topic><topic>Privacy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayci, Gonul</creatorcontrib><creatorcontrib>Ozgur, Arzucan</creatorcontrib><creatorcontrib>Sensoy, Murat</creatorcontrib><creatorcontrib>Yolum, Pinar</creatorcontrib><creatorcontrib>Murukannaiah, Pradeep K.</creatorcontrib><creatorcontrib>Singh, Munindar P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE internet computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ayci, Gonul</au><au>Ozgur, Arzucan</au><au>Sensoy, Murat</au><au>Yolum, Pinar</au><au>Murukannaiah, Pradeep K.</au><au>Singh, Munindar P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can We Explain Privacy?</atitle><jtitle>IEEE internet computing</jtitle><stitle>MIC</stitle><date>2023-07</date><risdate>2023</risdate><volume>27</volume><issue>4</issue><spage>75</spage><epage>80</epage><pages>75-80</pages><issn>1089-7801</issn><eissn>1941-0131</eissn><coden>IICOFX</coden><abstract>Web users want to protect their privacy while sharing content online. This can be done through automated privacy assistants that are capable of taking actions by detecting privacy violations and recommending privacy settings for content that the user intends to share. While these approaches are promising in terms of the accuracy of their privacy decisions, they lack the ability to explain to the end user why certain decisions are being made. In this work, we study how privacy assistants can be enhanced through explanations generated in the context of privacy decisions for the user content. We outline a methodology to create explanations of privacy decisions, discuss core challenges, and show example explanations that are generated by our approach.</abstract><pub>IEEE</pub><doi>10.1109/MIC.2023.3270768</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8806-4508</orcidid><orcidid>https://orcid.org/0000-0002-9200-8848</orcidid><orcidid>https://orcid.org/0000-0001-8376-1056</orcidid><orcidid>https://orcid.org/0000-0001-7848-1834</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7801
ispartof IEEE internet computing, 2023-07, Vol.27 (4), p.75-80
issn 1089-7801
1941-0131
language eng
recordid cdi_crossref_primary_10_1109_MIC_2023_3270768
source IEEE Electronic Library (IEL)
subjects Content management
Internet
Privacy
title Can We Explain Privacy?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20We%20Explain%20Privacy?&rft.jtitle=IEEE%20internet%20computing&rft.au=Ayci,%20Gonul&rft.date=2023-07&rft.volume=27&rft.issue=4&rft.spage=75&rft.epage=80&rft.pages=75-80&rft.issn=1089-7801&rft.eissn=1941-0131&rft.coden=IICOFX&rft_id=info:doi/10.1109/MIC.2023.3270768&rft_dat=%3Ccrossref_RIE%3E10_1109_MIC_2023_3270768%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10184288&rfr_iscdi=true