Can We Explain Privacy?
Web users want to protect their privacy while sharing content online. This can be done through automated privacy assistants that are capable of taking actions by detecting privacy violations and recommending privacy settings for content that the user intends to share. While these approaches are prom...
Gespeichert in:
Veröffentlicht in: | IEEE internet computing 2023-07, Vol.27 (4), p.75-80 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | 4 |
container_start_page | 75 |
container_title | IEEE internet computing |
container_volume | 27 |
creator | Ayci, Gonul Ozgur, Arzucan Sensoy, Murat Yolum, Pinar Murukannaiah, Pradeep K. Singh, Munindar P. |
description | Web users want to protect their privacy while sharing content online. This can be done through automated privacy assistants that are capable of taking actions by detecting privacy violations and recommending privacy settings for content that the user intends to share. While these approaches are promising in terms of the accuracy of their privacy decisions, they lack the ability to explain to the end user why certain decisions are being made. In this work, we study how privacy assistants can be enhanced through explanations generated in the context of privacy decisions for the user content. We outline a methodology to create explanations of privacy decisions, discuss core challenges, and show example explanations that are generated by our approach. |
doi_str_mv | 10.1109/MIC.2023.3270768 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MIC_2023_3270768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10184288</ieee_id><sourcerecordid>10_1109_MIC_2023_3270768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-db7e11a8875dba3dd74720918b5380327a99d8944020c6745bc05129dbcd25fe3</originalsourceid><addsrcrecordid>eNpNjz1LA0EYhBdRMEZrLSzuD-z5vvuRfbcSOaIGIloolst-HZzEGHZFzL_3QlJYzRQzwzyMXSG0iGBvnhZdK0DIVgoDZkZHbIJWIQeUeDx6IMsNAZ6ys1o_AIBI4IRddn7dvOdm_rtZ-WHdvJThx8ft7Tk76f2q5ouDTtnb_fy1e-TL54dFd7fkUaD55imYjOiJjE7By5SMMgIsUtCSYLzirU1klQIBcWaUDhE0CptCTEL3WU4Z7Hdj-aq15N5tyvDpy9YhuB2YG8HcDswdwMbK9b4y5Jz_xZGUIJJ_ZdFGqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Can We Explain Privacy?</title><source>IEEE Electronic Library (IEL)</source><creator>Ayci, Gonul ; Ozgur, Arzucan ; Sensoy, Murat ; Yolum, Pinar ; Murukannaiah, Pradeep K. ; Singh, Munindar P.</creator><creatorcontrib>Ayci, Gonul ; Ozgur, Arzucan ; Sensoy, Murat ; Yolum, Pinar ; Murukannaiah, Pradeep K. ; Singh, Munindar P.</creatorcontrib><description>Web users want to protect their privacy while sharing content online. This can be done through automated privacy assistants that are capable of taking actions by detecting privacy violations and recommending privacy settings for content that the user intends to share. While these approaches are promising in terms of the accuracy of their privacy decisions, they lack the ability to explain to the end user why certain decisions are being made. In this work, we study how privacy assistants can be enhanced through explanations generated in the context of privacy decisions for the user content. We outline a methodology to create explanations of privacy decisions, discuss core challenges, and show example explanations that are generated by our approach.</description><identifier>ISSN: 1089-7801</identifier><identifier>EISSN: 1941-0131</identifier><identifier>DOI: 10.1109/MIC.2023.3270768</identifier><identifier>CODEN: IICOFX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Content management ; Internet ; Privacy</subject><ispartof>IEEE internet computing, 2023-07, Vol.27 (4), p.75-80</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-db7e11a8875dba3dd74720918b5380327a99d8944020c6745bc05129dbcd25fe3</cites><orcidid>0000-0001-8806-4508 ; 0000-0002-9200-8848 ; 0000-0001-8376-1056 ; 0000-0001-7848-1834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10184288$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10184288$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ayci, Gonul</creatorcontrib><creatorcontrib>Ozgur, Arzucan</creatorcontrib><creatorcontrib>Sensoy, Murat</creatorcontrib><creatorcontrib>Yolum, Pinar</creatorcontrib><creatorcontrib>Murukannaiah, Pradeep K.</creatorcontrib><creatorcontrib>Singh, Munindar P.</creatorcontrib><title>Can We Explain Privacy?</title><title>IEEE internet computing</title><addtitle>MIC</addtitle><description>Web users want to protect their privacy while sharing content online. This can be done through automated privacy assistants that are capable of taking actions by detecting privacy violations and recommending privacy settings for content that the user intends to share. While these approaches are promising in terms of the accuracy of their privacy decisions, they lack the ability to explain to the end user why certain decisions are being made. In this work, we study how privacy assistants can be enhanced through explanations generated in the context of privacy decisions for the user content. We outline a methodology to create explanations of privacy decisions, discuss core challenges, and show example explanations that are generated by our approach.</description><subject>Content management</subject><subject>Internet</subject><subject>Privacy</subject><issn>1089-7801</issn><issn>1941-0131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNjz1LA0EYhBdRMEZrLSzuD-z5vvuRfbcSOaIGIloolst-HZzEGHZFzL_3QlJYzRQzwzyMXSG0iGBvnhZdK0DIVgoDZkZHbIJWIQeUeDx6IMsNAZ6ys1o_AIBI4IRddn7dvOdm_rtZ-WHdvJThx8ft7Tk76f2q5ouDTtnb_fy1e-TL54dFd7fkUaD55imYjOiJjE7By5SMMgIsUtCSYLzirU1klQIBcWaUDhE0CptCTEL3WU4Z7Hdj-aq15N5tyvDpy9YhuB2YG8HcDswdwMbK9b4y5Jz_xZGUIJJ_ZdFGqg</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Ayci, Gonul</creator><creator>Ozgur, Arzucan</creator><creator>Sensoy, Murat</creator><creator>Yolum, Pinar</creator><creator>Murukannaiah, Pradeep K.</creator><creator>Singh, Munindar P.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8806-4508</orcidid><orcidid>https://orcid.org/0000-0002-9200-8848</orcidid><orcidid>https://orcid.org/0000-0001-8376-1056</orcidid><orcidid>https://orcid.org/0000-0001-7848-1834</orcidid></search><sort><creationdate>202307</creationdate><title>Can We Explain Privacy?</title><author>Ayci, Gonul ; Ozgur, Arzucan ; Sensoy, Murat ; Yolum, Pinar ; Murukannaiah, Pradeep K. ; Singh, Munindar P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-db7e11a8875dba3dd74720918b5380327a99d8944020c6745bc05129dbcd25fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Content management</topic><topic>Internet</topic><topic>Privacy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayci, Gonul</creatorcontrib><creatorcontrib>Ozgur, Arzucan</creatorcontrib><creatorcontrib>Sensoy, Murat</creatorcontrib><creatorcontrib>Yolum, Pinar</creatorcontrib><creatorcontrib>Murukannaiah, Pradeep K.</creatorcontrib><creatorcontrib>Singh, Munindar P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE internet computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ayci, Gonul</au><au>Ozgur, Arzucan</au><au>Sensoy, Murat</au><au>Yolum, Pinar</au><au>Murukannaiah, Pradeep K.</au><au>Singh, Munindar P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can We Explain Privacy?</atitle><jtitle>IEEE internet computing</jtitle><stitle>MIC</stitle><date>2023-07</date><risdate>2023</risdate><volume>27</volume><issue>4</issue><spage>75</spage><epage>80</epage><pages>75-80</pages><issn>1089-7801</issn><eissn>1941-0131</eissn><coden>IICOFX</coden><abstract>Web users want to protect their privacy while sharing content online. This can be done through automated privacy assistants that are capable of taking actions by detecting privacy violations and recommending privacy settings for content that the user intends to share. While these approaches are promising in terms of the accuracy of their privacy decisions, they lack the ability to explain to the end user why certain decisions are being made. In this work, we study how privacy assistants can be enhanced through explanations generated in the context of privacy decisions for the user content. We outline a methodology to create explanations of privacy decisions, discuss core challenges, and show example explanations that are generated by our approach.</abstract><pub>IEEE</pub><doi>10.1109/MIC.2023.3270768</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8806-4508</orcidid><orcidid>https://orcid.org/0000-0002-9200-8848</orcidid><orcidid>https://orcid.org/0000-0001-8376-1056</orcidid><orcidid>https://orcid.org/0000-0001-7848-1834</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7801 |
ispartof | IEEE internet computing, 2023-07, Vol.27 (4), p.75-80 |
issn | 1089-7801 1941-0131 |
language | eng |
recordid | cdi_crossref_primary_10_1109_MIC_2023_3270768 |
source | IEEE Electronic Library (IEL) |
subjects | Content management Internet Privacy |
title | Can We Explain Privacy? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20We%20Explain%20Privacy?&rft.jtitle=IEEE%20internet%20computing&rft.au=Ayci,%20Gonul&rft.date=2023-07&rft.volume=27&rft.issue=4&rft.spage=75&rft.epage=80&rft.pages=75-80&rft.issn=1089-7801&rft.eissn=1941-0131&rft.coden=IICOFX&rft_id=info:doi/10.1109/MIC.2023.3270768&rft_dat=%3Ccrossref_RIE%3E10_1109_MIC_2023_3270768%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10184288&rfr_iscdi=true |