Toward Building Edge Learning Pipelines
From a bird's eye point of view, large-scale data analytics workflows, e.g., those executed in popular tools, such as Apache Spark and Flink, are typically represented by directed acyclic graphs. Also, they are in a large scale in two dimensions: first, they are capable of processing big data (...
Gespeichert in:
Veröffentlicht in: | IEEE internet computing 2023-01, Vol.27 (1), p.61-69 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69 |
---|---|
container_issue | 1 |
container_start_page | 61 |
container_title | IEEE internet computing |
container_volume | 27 |
creator | Gounaris, Anastasios Michailidou, Anna-Valentini Dustdar, Schahram Dustdar, Schahram |
description | From a bird's eye point of view, large-scale data analytics workflows, e.g., those executed in popular tools, such as Apache Spark and Flink, are typically represented by directed acyclic graphs. Also, they are in a large scale in two dimensions: first, they are capable of processing big data (e.g., both in terms of volume and velocity) mainly through employing massive parallelism, and second, they can run over (powerful) distributed infrastructures. This article focuses on edge computing and its confluence with big data analytics workflows, which nowadays place special emphasis on deep learning and data quality. |
doi_str_mv | 10.1109/MIC.2022.3171643 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MIC_2022_3171643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10044297</ieee_id><sourcerecordid>10_1109_MIC_2022_3171643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-67275678927016a98cfde646820ee0decfe4142de573c89d278ee83067e0796c3</originalsourceid><addsrcrecordid>eNpNj71PwzAUxC0EEqWwMzBkY0p4z3b9MUJUoFJQO5TZiuyXyiiklQ1C_Pckagemu5PuTvoxdotQIYJ9eFvVFQfOK4EalRRnbIZWYgko8Hz0YGypDeAlu8r5AwCM4Thj99v9T5tC8fQd-xCHXbEMOyoaatMwpU08UB8Hytfsomv7TDcnnbP35-W2fi2b9cuqfmxKz5X8KpXmeqG0sVwDqtYa3wVSUhkORBDIdyRR8kALLbyxgWtDZAQoTaCt8mLO4Pjr0z7nRJ07pPjZpl-H4CZQN4K6CdSdQMfJ3XESiehfHaTkVos_bhBM8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward Building Edge Learning Pipelines</title><source>IEEE Electronic Library (IEL)</source><creator>Gounaris, Anastasios ; Michailidou, Anna-Valentini ; Dustdar, Schahram ; Dustdar, Schahram</creator><creatorcontrib>Gounaris, Anastasios ; Michailidou, Anna-Valentini ; Dustdar, Schahram ; Dustdar, Schahram</creatorcontrib><description>From a bird's eye point of view, large-scale data analytics workflows, e.g., those executed in popular tools, such as Apache Spark and Flink, are typically represented by directed acyclic graphs. Also, they are in a large scale in two dimensions: first, they are capable of processing big data (e.g., both in terms of volume and velocity) mainly through employing massive parallelism, and second, they can run over (powerful) distributed infrastructures. This article focuses on edge computing and its confluence with big data analytics workflows, which nowadays place special emphasis on deep learning and data quality.</description><identifier>ISSN: 1089-7801</identifier><identifier>EISSN: 1941-0131</identifier><identifier>DOI: 10.1109/MIC.2022.3171643</identifier><identifier>CODEN: IICOFX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Big Data ; Cluster computing ; Data analysis ; Data integrity ; Deep learning ; Directed acyclic graph</subject><ispartof>IEEE internet computing, 2023-01, Vol.27 (1), p.61-69</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-67275678927016a98cfde646820ee0decfe4142de573c89d278ee83067e0796c3</citedby><cites>FETCH-LOGICAL-c264t-67275678927016a98cfde646820ee0decfe4142de573c89d278ee83067e0796c3</cites><orcidid>0000-0001-6872-8821 ; 0000-0003-3976-7615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10044297$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10044297$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gounaris, Anastasios</creatorcontrib><creatorcontrib>Michailidou, Anna-Valentini</creatorcontrib><creatorcontrib>Dustdar, Schahram</creatorcontrib><creatorcontrib>Dustdar, Schahram</creatorcontrib><title>Toward Building Edge Learning Pipelines</title><title>IEEE internet computing</title><addtitle>MIC</addtitle><description>From a bird's eye point of view, large-scale data analytics workflows, e.g., those executed in popular tools, such as Apache Spark and Flink, are typically represented by directed acyclic graphs. Also, they are in a large scale in two dimensions: first, they are capable of processing big data (e.g., both in terms of volume and velocity) mainly through employing massive parallelism, and second, they can run over (powerful) distributed infrastructures. This article focuses on edge computing and its confluence with big data analytics workflows, which nowadays place special emphasis on deep learning and data quality.</description><subject>Big Data</subject><subject>Cluster computing</subject><subject>Data analysis</subject><subject>Data integrity</subject><subject>Deep learning</subject><subject>Directed acyclic graph</subject><issn>1089-7801</issn><issn>1941-0131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj71PwzAUxC0EEqWwMzBkY0p4z3b9MUJUoFJQO5TZiuyXyiiklQ1C_Pckagemu5PuTvoxdotQIYJ9eFvVFQfOK4EalRRnbIZWYgko8Hz0YGypDeAlu8r5AwCM4Thj99v9T5tC8fQd-xCHXbEMOyoaatMwpU08UB8Hytfsomv7TDcnnbP35-W2fi2b9cuqfmxKz5X8KpXmeqG0sVwDqtYa3wVSUhkORBDIdyRR8kALLbyxgWtDZAQoTaCt8mLO4Pjr0z7nRJ07pPjZpl-H4CZQN4K6CdSdQMfJ3XESiehfHaTkVos_bhBM8w</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Gounaris, Anastasios</creator><creator>Michailidou, Anna-Valentini</creator><creator>Dustdar, Schahram</creator><creator>Dustdar, Schahram</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6872-8821</orcidid><orcidid>https://orcid.org/0000-0003-3976-7615</orcidid></search><sort><creationdate>202301</creationdate><title>Toward Building Edge Learning Pipelines</title><author>Gounaris, Anastasios ; Michailidou, Anna-Valentini ; Dustdar, Schahram ; Dustdar, Schahram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-67275678927016a98cfde646820ee0decfe4142de573c89d278ee83067e0796c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Big Data</topic><topic>Cluster computing</topic><topic>Data analysis</topic><topic>Data integrity</topic><topic>Deep learning</topic><topic>Directed acyclic graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gounaris, Anastasios</creatorcontrib><creatorcontrib>Michailidou, Anna-Valentini</creatorcontrib><creatorcontrib>Dustdar, Schahram</creatorcontrib><creatorcontrib>Dustdar, Schahram</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE internet computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gounaris, Anastasios</au><au>Michailidou, Anna-Valentini</au><au>Dustdar, Schahram</au><au>Dustdar, Schahram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Building Edge Learning Pipelines</atitle><jtitle>IEEE internet computing</jtitle><stitle>MIC</stitle><date>2023-01</date><risdate>2023</risdate><volume>27</volume><issue>1</issue><spage>61</spage><epage>69</epage><pages>61-69</pages><issn>1089-7801</issn><eissn>1941-0131</eissn><coden>IICOFX</coden><abstract>From a bird's eye point of view, large-scale data analytics workflows, e.g., those executed in popular tools, such as Apache Spark and Flink, are typically represented by directed acyclic graphs. Also, they are in a large scale in two dimensions: first, they are capable of processing big data (e.g., both in terms of volume and velocity) mainly through employing massive parallelism, and second, they can run over (powerful) distributed infrastructures. This article focuses on edge computing and its confluence with big data analytics workflows, which nowadays place special emphasis on deep learning and data quality.</abstract><pub>IEEE</pub><doi>10.1109/MIC.2022.3171643</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6872-8821</orcidid><orcidid>https://orcid.org/0000-0003-3976-7615</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7801 |
ispartof | IEEE internet computing, 2023-01, Vol.27 (1), p.61-69 |
issn | 1089-7801 1941-0131 |
language | eng |
recordid | cdi_crossref_primary_10_1109_MIC_2022_3171643 |
source | IEEE Electronic Library (IEL) |
subjects | Big Data Cluster computing Data analysis Data integrity Deep learning Directed acyclic graph |
title | Toward Building Edge Learning Pipelines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Building%20Edge%20Learning%20Pipelines&rft.jtitle=IEEE%20internet%20computing&rft.au=Gounaris,%20Anastasios&rft.date=2023-01&rft.volume=27&rft.issue=1&rft.spage=61&rft.epage=69&rft.pages=61-69&rft.issn=1089-7801&rft.eissn=1941-0131&rft.coden=IICOFX&rft_id=info:doi/10.1109/MIC.2022.3171643&rft_dat=%3Ccrossref_RIE%3E10_1109_MIC_2022_3171643%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10044297&rfr_iscdi=true |