Toward Building Edge Learning Pipelines

From a bird's eye point of view, large-scale data analytics workflows, e.g., those executed in popular tools, such as Apache Spark and Flink, are typically represented by directed acyclic graphs. Also, they are in a large scale in two dimensions: first, they are capable of processing big data (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet computing 2023-01, Vol.27 (1), p.61-69
Hauptverfasser: Gounaris, Anastasios, Michailidou, Anna-Valentini, Dustdar, Schahram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 61
container_title IEEE internet computing
container_volume 27
creator Gounaris, Anastasios
Michailidou, Anna-Valentini
Dustdar, Schahram
Dustdar, Schahram
description From a bird's eye point of view, large-scale data analytics workflows, e.g., those executed in popular tools, such as Apache Spark and Flink, are typically represented by directed acyclic graphs. Also, they are in a large scale in two dimensions: first, they are capable of processing big data (e.g., both in terms of volume and velocity) mainly through employing massive parallelism, and second, they can run over (powerful) distributed infrastructures. This article focuses on edge computing and its confluence with big data analytics workflows, which nowadays place special emphasis on deep learning and data quality.
doi_str_mv 10.1109/MIC.2022.3171643
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MIC_2022_3171643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10044297</ieee_id><sourcerecordid>10_1109_MIC_2022_3171643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-67275678927016a98cfde646820ee0decfe4142de573c89d278ee83067e0796c3</originalsourceid><addsrcrecordid>eNpNj71PwzAUxC0EEqWwMzBkY0p4z3b9MUJUoFJQO5TZiuyXyiiklQ1C_Pckagemu5PuTvoxdotQIYJ9eFvVFQfOK4EalRRnbIZWYgko8Hz0YGypDeAlu8r5AwCM4Thj99v9T5tC8fQd-xCHXbEMOyoaatMwpU08UB8Hytfsomv7TDcnnbP35-W2fi2b9cuqfmxKz5X8KpXmeqG0sVwDqtYa3wVSUhkORBDIdyRR8kALLbyxgWtDZAQoTaCt8mLO4Pjr0z7nRJ07pPjZpl-H4CZQN4K6CdSdQMfJ3XESiehfHaTkVos_bhBM8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward Building Edge Learning Pipelines</title><source>IEEE Electronic Library (IEL)</source><creator>Gounaris, Anastasios ; Michailidou, Anna-Valentini ; Dustdar, Schahram ; Dustdar, Schahram</creator><creatorcontrib>Gounaris, Anastasios ; Michailidou, Anna-Valentini ; Dustdar, Schahram ; Dustdar, Schahram</creatorcontrib><description>From a bird's eye point of view, large-scale data analytics workflows, e.g., those executed in popular tools, such as Apache Spark and Flink, are typically represented by directed acyclic graphs. Also, they are in a large scale in two dimensions: first, they are capable of processing big data (e.g., both in terms of volume and velocity) mainly through employing massive parallelism, and second, they can run over (powerful) distributed infrastructures. This article focuses on edge computing and its confluence with big data analytics workflows, which nowadays place special emphasis on deep learning and data quality.</description><identifier>ISSN: 1089-7801</identifier><identifier>EISSN: 1941-0131</identifier><identifier>DOI: 10.1109/MIC.2022.3171643</identifier><identifier>CODEN: IICOFX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Big Data ; Cluster computing ; Data analysis ; Data integrity ; Deep learning ; Directed acyclic graph</subject><ispartof>IEEE internet computing, 2023-01, Vol.27 (1), p.61-69</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-67275678927016a98cfde646820ee0decfe4142de573c89d278ee83067e0796c3</citedby><cites>FETCH-LOGICAL-c264t-67275678927016a98cfde646820ee0decfe4142de573c89d278ee83067e0796c3</cites><orcidid>0000-0001-6872-8821 ; 0000-0003-3976-7615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10044297$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10044297$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gounaris, Anastasios</creatorcontrib><creatorcontrib>Michailidou, Anna-Valentini</creatorcontrib><creatorcontrib>Dustdar, Schahram</creatorcontrib><creatorcontrib>Dustdar, Schahram</creatorcontrib><title>Toward Building Edge Learning Pipelines</title><title>IEEE internet computing</title><addtitle>MIC</addtitle><description>From a bird's eye point of view, large-scale data analytics workflows, e.g., those executed in popular tools, such as Apache Spark and Flink, are typically represented by directed acyclic graphs. Also, they are in a large scale in two dimensions: first, they are capable of processing big data (e.g., both in terms of volume and velocity) mainly through employing massive parallelism, and second, they can run over (powerful) distributed infrastructures. This article focuses on edge computing and its confluence with big data analytics workflows, which nowadays place special emphasis on deep learning and data quality.</description><subject>Big Data</subject><subject>Cluster computing</subject><subject>Data analysis</subject><subject>Data integrity</subject><subject>Deep learning</subject><subject>Directed acyclic graph</subject><issn>1089-7801</issn><issn>1941-0131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj71PwzAUxC0EEqWwMzBkY0p4z3b9MUJUoFJQO5TZiuyXyiiklQ1C_Pckagemu5PuTvoxdotQIYJ9eFvVFQfOK4EalRRnbIZWYgko8Hz0YGypDeAlu8r5AwCM4Thj99v9T5tC8fQd-xCHXbEMOyoaatMwpU08UB8Hytfsomv7TDcnnbP35-W2fi2b9cuqfmxKz5X8KpXmeqG0sVwDqtYa3wVSUhkORBDIdyRR8kALLbyxgWtDZAQoTaCt8mLO4Pjr0z7nRJ07pPjZpl-H4CZQN4K6CdSdQMfJ3XESiehfHaTkVos_bhBM8w</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Gounaris, Anastasios</creator><creator>Michailidou, Anna-Valentini</creator><creator>Dustdar, Schahram</creator><creator>Dustdar, Schahram</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6872-8821</orcidid><orcidid>https://orcid.org/0000-0003-3976-7615</orcidid></search><sort><creationdate>202301</creationdate><title>Toward Building Edge Learning Pipelines</title><author>Gounaris, Anastasios ; Michailidou, Anna-Valentini ; Dustdar, Schahram ; Dustdar, Schahram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-67275678927016a98cfde646820ee0decfe4142de573c89d278ee83067e0796c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Big Data</topic><topic>Cluster computing</topic><topic>Data analysis</topic><topic>Data integrity</topic><topic>Deep learning</topic><topic>Directed acyclic graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gounaris, Anastasios</creatorcontrib><creatorcontrib>Michailidou, Anna-Valentini</creatorcontrib><creatorcontrib>Dustdar, Schahram</creatorcontrib><creatorcontrib>Dustdar, Schahram</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE internet computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gounaris, Anastasios</au><au>Michailidou, Anna-Valentini</au><au>Dustdar, Schahram</au><au>Dustdar, Schahram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Building Edge Learning Pipelines</atitle><jtitle>IEEE internet computing</jtitle><stitle>MIC</stitle><date>2023-01</date><risdate>2023</risdate><volume>27</volume><issue>1</issue><spage>61</spage><epage>69</epage><pages>61-69</pages><issn>1089-7801</issn><eissn>1941-0131</eissn><coden>IICOFX</coden><abstract>From a bird's eye point of view, large-scale data analytics workflows, e.g., those executed in popular tools, such as Apache Spark and Flink, are typically represented by directed acyclic graphs. Also, they are in a large scale in two dimensions: first, they are capable of processing big data (e.g., both in terms of volume and velocity) mainly through employing massive parallelism, and second, they can run over (powerful) distributed infrastructures. This article focuses on edge computing and its confluence with big data analytics workflows, which nowadays place special emphasis on deep learning and data quality.</abstract><pub>IEEE</pub><doi>10.1109/MIC.2022.3171643</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6872-8821</orcidid><orcidid>https://orcid.org/0000-0003-3976-7615</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7801
ispartof IEEE internet computing, 2023-01, Vol.27 (1), p.61-69
issn 1089-7801
1941-0131
language eng
recordid cdi_crossref_primary_10_1109_MIC_2022_3171643
source IEEE Electronic Library (IEL)
subjects Big Data
Cluster computing
Data analysis
Data integrity
Deep learning
Directed acyclic graph
title Toward Building Edge Learning Pipelines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Building%20Edge%20Learning%20Pipelines&rft.jtitle=IEEE%20internet%20computing&rft.au=Gounaris,%20Anastasios&rft.date=2023-01&rft.volume=27&rft.issue=1&rft.spage=61&rft.epage=69&rft.pages=61-69&rft.issn=1089-7801&rft.eissn=1941-0131&rft.coden=IICOFX&rft_id=info:doi/10.1109/MIC.2022.3171643&rft_dat=%3Ccrossref_RIE%3E10_1109_MIC_2022_3171643%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10044297&rfr_iscdi=true