Semantics of the Black-Box: Can Knowledge Graphs Help Make Deep Learning Systems More Interpretable and Explainable?
The recent series of innovations in deep learning (DL) have shown enormous potential to impact individuals and society, both positively and negatively. DL models utilizing massive computing power and enormous datasets have significantly outperformed prior historical benchmarks on increasingly diffic...
Gespeichert in:
Veröffentlicht in: | IEEE internet computing 2021-01, Vol.25 (1), p.51-59 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | IEEE internet computing |
container_volume | 25 |
creator | Gaur, Manas Faldu, Keyur Sheth, Amit Sheth, Amit |
description | The recent series of innovations in deep learning (DL) have shown enormous potential to impact individuals and society, both positively and negatively. DL models utilizing massive computing power and enormous datasets have significantly outperformed prior historical benchmarks on increasingly difficult, well-defined research tasks across technology domains such as computer vision, natural language processing, and human-computer interactions. However, DL's black-box nature and over-reliance on massive amounts of data condensed into labels and dense representations pose challenges for interpretability and explainability. Furthermore, DLs have not proven their ability to effectively utilize relevant domain knowledge critical to human understanding. This aspect was missing in early data-focused approaches and necessitated knowledge-infused learning (K-iL) to incorporate computational knowledge. This article demonstrates how knowledge, provided as a knowledge graph, is incorporated into DL using K-iL. Through examples from natural language processing applications in healthcare and education, we discuss the utility of K-iL towards interpretability and explainability. |
doi_str_mv | 10.1109/MIC.2020.3031769 |
format | Article |
fullrecord | <record><control><sourceid>webofscience_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MIC_2020_3031769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9357868</ieee_id><sourcerecordid>000621401300006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-27ae9da554f7dd26e5ead1eb465715ab0bf62b2a2aa9558d133a5771a1b84b63</originalsourceid><addsrcrecordid>eNqNkL9PwzAQhSMEEj93JBbvKMVnx4nDgiAUWtGKoezRJblAaOpEtlHb_55URbAy3TvpfW_4guAS-AiApzfzaTYSXPCR5BKSOD0ITiCNIOQg4XDIXKdhojkcB6fOfXLOtRZwEvgFrdD4pnSsq5n_IPbQYrkMH7rNLcvQsBfTrVuq3ok9W-w_HJtQ27M5Lok9EvVsRmhNY97ZYus8rRybd5bY1HiyvSWPRUsMTcXGm77Fxuz-u_PgqMbW0cXPPQvensZv2SScvT5Ps_tZWEqufCgSpLRCpaI6qSoRkyKsgIooVgkoLHhRx6IQKBBTpXQFUqJKEkAodFTE8izg-9nSds5ZqvPeNiu02xx4vpOWD9LynbT8R9qAXO-RNRVd7cqGTEm_2GAtFhANSvkuDm39_3bWePRNZ7Luy_gBvdqjDdEfkkqV6FjLb8o6iWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semantics of the Black-Box: Can Knowledge Graphs Help Make Deep Learning Systems More Interpretable and Explainable?</title><source>IEEE Electronic Library (IEL)</source><creator>Gaur, Manas ; Faldu, Keyur ; Sheth, Amit ; Sheth, Amit</creator><creatorcontrib>Gaur, Manas ; Faldu, Keyur ; Sheth, Amit ; Sheth, Amit</creatorcontrib><description>The recent series of innovations in deep learning (DL) have shown enormous potential to impact individuals and society, both positively and negatively. DL models utilizing massive computing power and enormous datasets have significantly outperformed prior historical benchmarks on increasingly difficult, well-defined research tasks across technology domains such as computer vision, natural language processing, and human-computer interactions. However, DL's black-box nature and over-reliance on massive amounts of data condensed into labels and dense representations pose challenges for interpretability and explainability. Furthermore, DLs have not proven their ability to effectively utilize relevant domain knowledge critical to human understanding. This aspect was missing in early data-focused approaches and necessitated knowledge-infused learning (K-iL) to incorporate computational knowledge. This article demonstrates how knowledge, provided as a knowledge graph, is incorporated into DL using K-iL. Through examples from natural language processing applications in healthcare and education, we discuss the utility of K-iL towards interpretability and explainability.</description><identifier>ISSN: 1089-7801</identifier><identifier>EISSN: 1941-0131</identifier><identifier>DOI: 10.1109/MIC.2020.3031769</identifier><identifier>CODEN: IICOFX</identifier><language>eng</language><publisher>LOS ALAMITOS: IEEE</publisher><subject>Artificial intelligence ; Computational modeling ; Computer Science ; Computer Science, Software Engineering ; Computer vision ; Deep learning ; Human computer interaction ; Medical services ; Natural language processing ; Science & Technology ; Semantics ; Technology</subject><ispartof>IEEE internet computing, 2021-01, Vol.25 (1), p.51-59</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>72</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000621401300006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c305t-27ae9da554f7dd26e5ead1eb465715ab0bf62b2a2aa9558d133a5771a1b84b63</citedby><cites>FETCH-LOGICAL-c305t-27ae9da554f7dd26e5ead1eb465715ab0bf62b2a2aa9558d133a5771a1b84b63</cites><orcidid>0000-0002-0021-5293 ; 0000-0002-5411-2230 ; 0000-0002-1621-3321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9357868$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9357868$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gaur, Manas</creatorcontrib><creatorcontrib>Faldu, Keyur</creatorcontrib><creatorcontrib>Sheth, Amit</creatorcontrib><creatorcontrib>Sheth, Amit</creatorcontrib><title>Semantics of the Black-Box: Can Knowledge Graphs Help Make Deep Learning Systems More Interpretable and Explainable?</title><title>IEEE internet computing</title><addtitle>MIC</addtitle><addtitle>IEEE INTERNET COMPUT</addtitle><description>The recent series of innovations in deep learning (DL) have shown enormous potential to impact individuals and society, both positively and negatively. DL models utilizing massive computing power and enormous datasets have significantly outperformed prior historical benchmarks on increasingly difficult, well-defined research tasks across technology domains such as computer vision, natural language processing, and human-computer interactions. However, DL's black-box nature and over-reliance on massive amounts of data condensed into labels and dense representations pose challenges for interpretability and explainability. Furthermore, DLs have not proven their ability to effectively utilize relevant domain knowledge critical to human understanding. This aspect was missing in early data-focused approaches and necessitated knowledge-infused learning (K-iL) to incorporate computational knowledge. This article demonstrates how knowledge, provided as a knowledge graph, is incorporated into DL using K-iL. Through examples from natural language processing applications in healthcare and education, we discuss the utility of K-iL towards interpretability and explainability.</description><subject>Artificial intelligence</subject><subject>Computational modeling</subject><subject>Computer Science</subject><subject>Computer Science, Software Engineering</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Human computer interaction</subject><subject>Medical services</subject><subject>Natural language processing</subject><subject>Science & Technology</subject><subject>Semantics</subject><subject>Technology</subject><issn>1089-7801</issn><issn>1941-0131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkL9PwzAQhSMEEj93JBbvKMVnx4nDgiAUWtGKoezRJblAaOpEtlHb_55URbAy3TvpfW_4guAS-AiApzfzaTYSXPCR5BKSOD0ITiCNIOQg4XDIXKdhojkcB6fOfXLOtRZwEvgFrdD4pnSsq5n_IPbQYrkMH7rNLcvQsBfTrVuq3ok9W-w_HJtQ27M5Lok9EvVsRmhNY97ZYus8rRybd5bY1HiyvSWPRUsMTcXGm77Fxuz-u_PgqMbW0cXPPQvensZv2SScvT5Ps_tZWEqufCgSpLRCpaI6qSoRkyKsgIooVgkoLHhRx6IQKBBTpXQFUqJKEkAodFTE8izg-9nSds5ZqvPeNiu02xx4vpOWD9LynbT8R9qAXO-RNRVd7cqGTEm_2GAtFhANSvkuDm39_3bWePRNZ7Luy_gBvdqjDdEfkkqV6FjLb8o6iWU</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Gaur, Manas</creator><creator>Faldu, Keyur</creator><creator>Sheth, Amit</creator><creator>Sheth, Amit</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0021-5293</orcidid><orcidid>https://orcid.org/0000-0002-5411-2230</orcidid><orcidid>https://orcid.org/0000-0002-1621-3321</orcidid></search><sort><creationdate>202101</creationdate><title>Semantics of the Black-Box: Can Knowledge Graphs Help Make Deep Learning Systems More Interpretable and Explainable?</title><author>Gaur, Manas ; Faldu, Keyur ; Sheth, Amit ; Sheth, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-27ae9da554f7dd26e5ead1eb465715ab0bf62b2a2aa9558d133a5771a1b84b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Computational modeling</topic><topic>Computer Science</topic><topic>Computer Science, Software Engineering</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Human computer interaction</topic><topic>Medical services</topic><topic>Natural language processing</topic><topic>Science & Technology</topic><topic>Semantics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaur, Manas</creatorcontrib><creatorcontrib>Faldu, Keyur</creatorcontrib><creatorcontrib>Sheth, Amit</creatorcontrib><creatorcontrib>Sheth, Amit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>IEEE internet computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gaur, Manas</au><au>Faldu, Keyur</au><au>Sheth, Amit</au><au>Sheth, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantics of the Black-Box: Can Knowledge Graphs Help Make Deep Learning Systems More Interpretable and Explainable?</atitle><jtitle>IEEE internet computing</jtitle><stitle>MIC</stitle><stitle>IEEE INTERNET COMPUT</stitle><date>2021-01</date><risdate>2021</risdate><volume>25</volume><issue>1</issue><spage>51</spage><epage>59</epage><pages>51-59</pages><issn>1089-7801</issn><eissn>1941-0131</eissn><coden>IICOFX</coden><abstract>The recent series of innovations in deep learning (DL) have shown enormous potential to impact individuals and society, both positively and negatively. DL models utilizing massive computing power and enormous datasets have significantly outperformed prior historical benchmarks on increasingly difficult, well-defined research tasks across technology domains such as computer vision, natural language processing, and human-computer interactions. However, DL's black-box nature and over-reliance on massive amounts of data condensed into labels and dense representations pose challenges for interpretability and explainability. Furthermore, DLs have not proven their ability to effectively utilize relevant domain knowledge critical to human understanding. This aspect was missing in early data-focused approaches and necessitated knowledge-infused learning (K-iL) to incorporate computational knowledge. This article demonstrates how knowledge, provided as a knowledge graph, is incorporated into DL using K-iL. Through examples from natural language processing applications in healthcare and education, we discuss the utility of K-iL towards interpretability and explainability.</abstract><cop>LOS ALAMITOS</cop><pub>IEEE</pub><doi>10.1109/MIC.2020.3031769</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0021-5293</orcidid><orcidid>https://orcid.org/0000-0002-5411-2230</orcidid><orcidid>https://orcid.org/0000-0002-1621-3321</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7801 |
ispartof | IEEE internet computing, 2021-01, Vol.25 (1), p.51-59 |
issn | 1089-7801 1941-0131 |
language | eng |
recordid | cdi_crossref_primary_10_1109_MIC_2020_3031769 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Computational modeling Computer Science Computer Science, Software Engineering Computer vision Deep learning Human computer interaction Medical services Natural language processing Science & Technology Semantics Technology |
title | Semantics of the Black-Box: Can Knowledge Graphs Help Make Deep Learning Systems More Interpretable and Explainable? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantics%20of%20the%20Black-Box:%20Can%20Knowledge%20Graphs%20Help%20Make%20Deep%20Learning%20Systems%20More%20Interpretable%20and%20Explainable?&rft.jtitle=IEEE%20internet%20computing&rft.au=Gaur,%20Manas&rft.date=2021-01&rft.volume=25&rft.issue=1&rft.spage=51&rft.epage=59&rft.pages=51-59&rft.issn=1089-7801&rft.eissn=1941-0131&rft.coden=IICOFX&rft_id=info:doi/10.1109/MIC.2020.3031769&rft_dat=%3Cwebofscience_RIE%3E000621401300006%3C/webofscience_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9357868&rfr_iscdi=true |