The AIDE Toolbox: Artificial intelligence for disentangling extreme events [Software and Data Sets]

We introduce the Artificial Intelligence for Disentangling Extremes (AIDE) toolbox that allows for anomaly detection, extreme event analysis, and impact assessment in remote sensing and geoscience applications. AIDE integrates advanced machine learning (ML) models, ranging in complexity, assumptions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing magazine 2024-06, Vol.12 (2), p.113-118
Hauptverfasser: Gonzalez-Calabuig, Maria, Cortes-Andres, Jordi, Williams, Tristan Keith Ellis, Zhang, Mengxue, Pellicer-Valero, Oscar Jose, Fernandez-Torres, Miguel-Angel, Camps-Valls, Gustau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 2
container_start_page 113
container_title IEEE geoscience and remote sensing magazine
container_volume 12
creator Gonzalez-Calabuig, Maria
Cortes-Andres, Jordi
Williams, Tristan Keith Ellis
Zhang, Mengxue
Pellicer-Valero, Oscar Jose
Fernandez-Torres, Miguel-Angel
Camps-Valls, Gustau
description We introduce the Artificial Intelligence for Disentangling Extremes (AIDE) toolbox that allows for anomaly detection, extreme event analysis, and impact assessment in remote sensing and geoscience applications. AIDE integrates advanced machine learning (ML) models, ranging in complexity, assumptions, and sophistication, and can yield spatiotemporal explicit monitoring maps with probabilistic estimates. Supervised and unsupervised algorithms, deterministic and probabilistic, convolutional and recurrent neural networks (CNNs and RNNs), as well as methods based on density estimation, are covered by this framework. The open source toolbox is intended for scientists, engineers, and students with basic knowledge of remote sensing and geosciences working in anomaly detection, deep learning (DL), and explainable AI (XAI), and is available at https://github.com/IPL-UV/AIDE .
doi_str_mv 10.1109/MGRS.2024.3382544
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MGRS_2024_3382544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10582507</ieee_id><sourcerecordid>10_1109_MGRS_2024_3382544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-fdc0ffafd80f1a5ccbf8da130103ff7adb0de711c3c83066cb2810bf662854863</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWLQ_QPCQP7A1k-xmU2-lrbVQEWw9iSzZZFIj211JgtZ_75b24LvM4828OXyE3AAbAbDx3dPiZT3ijOcjIRQv8vyMDDhIlUkl4Lz3eSkyLsblJRnG-Ml6qQLGoAbEbD6QTpazOd10XVN3-3s6Cck7b7xuqG8TNo3fYmuQui5Q6yO2SbfbxrdbivsUcIcUv_sw0rd159KPDkh1a-lMJ03XmOL7Nblwuok4PM0r8vow30wfs9XzYjmdrDIDuUqZs4Y5p51VzIEujKmdshoEAyacK7WtmcUSwAijBJPS1FwBq52UXBW5kuKKwPGvCV2MAV31FfxOh98KWHUAVR1AVQdQ1QlU37k9djwi_rsv-jUrxR_y6GX5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The AIDE Toolbox: Artificial intelligence for disentangling extreme events [Software and Data Sets]</title><source>IEEE Electronic Library (IEL)</source><creator>Gonzalez-Calabuig, Maria ; Cortes-Andres, Jordi ; Williams, Tristan Keith Ellis ; Zhang, Mengxue ; Pellicer-Valero, Oscar Jose ; Fernandez-Torres, Miguel-Angel ; Camps-Valls, Gustau</creator><creatorcontrib>Gonzalez-Calabuig, Maria ; Cortes-Andres, Jordi ; Williams, Tristan Keith Ellis ; Zhang, Mengxue ; Pellicer-Valero, Oscar Jose ; Fernandez-Torres, Miguel-Angel ; Camps-Valls, Gustau</creatorcontrib><description>We introduce the Artificial Intelligence for Disentangling Extremes (AIDE) toolbox that allows for anomaly detection, extreme event analysis, and impact assessment in remote sensing and geoscience applications. AIDE integrates advanced machine learning (ML) models, ranging in complexity, assumptions, and sophistication, and can yield spatiotemporal explicit monitoring maps with probabilistic estimates. Supervised and unsupervised algorithms, deterministic and probabilistic, convolutional and recurrent neural networks (CNNs and RNNs), as well as methods based on density estimation, are covered by this framework. The open source toolbox is intended for scientists, engineers, and students with basic knowledge of remote sensing and geosciences working in anomaly detection, deep learning (DL), and explainable AI (XAI), and is available at https://github.com/IPL-UV/AIDE .</description><identifier>ISSN: 2473-2397</identifier><identifier>EISSN: 2168-6831</identifier><identifier>DOI: 10.1109/MGRS.2024.3382544</identifier><identifier>CODEN: IGRSCZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Anomaly detection ; Artificial intelligence ; Data models ; Pipelines ; Probabilistic logic ; Recurrent neural networks ; Solid modeling ; Time series analysis</subject><ispartof>IEEE geoscience and remote sensing magazine, 2024-06, Vol.12 (2), p.113-118</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-fdc0ffafd80f1a5ccbf8da130103ff7adb0de711c3c83066cb2810bf662854863</cites><orcidid>0000-0003-1683-2138 ; 0000-0002-9344-8191 ; 0000-0003-0532-7013 ; 0000-0002-0801-199X ; 0000-0002-0104-1029 ; 0000-0003-1254-2387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10582507$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10582507$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gonzalez-Calabuig, Maria</creatorcontrib><creatorcontrib>Cortes-Andres, Jordi</creatorcontrib><creatorcontrib>Williams, Tristan Keith Ellis</creatorcontrib><creatorcontrib>Zhang, Mengxue</creatorcontrib><creatorcontrib>Pellicer-Valero, Oscar Jose</creatorcontrib><creatorcontrib>Fernandez-Torres, Miguel-Angel</creatorcontrib><creatorcontrib>Camps-Valls, Gustau</creatorcontrib><title>The AIDE Toolbox: Artificial intelligence for disentangling extreme events [Software and Data Sets]</title><title>IEEE geoscience and remote sensing magazine</title><addtitle>GRSM</addtitle><description>We introduce the Artificial Intelligence for Disentangling Extremes (AIDE) toolbox that allows for anomaly detection, extreme event analysis, and impact assessment in remote sensing and geoscience applications. AIDE integrates advanced machine learning (ML) models, ranging in complexity, assumptions, and sophistication, and can yield spatiotemporal explicit monitoring maps with probabilistic estimates. Supervised and unsupervised algorithms, deterministic and probabilistic, convolutional and recurrent neural networks (CNNs and RNNs), as well as methods based on density estimation, are covered by this framework. The open source toolbox is intended for scientists, engineers, and students with basic knowledge of remote sensing and geosciences working in anomaly detection, deep learning (DL), and explainable AI (XAI), and is available at https://github.com/IPL-UV/AIDE .</description><subject>Analytical models</subject><subject>Anomaly detection</subject><subject>Artificial intelligence</subject><subject>Data models</subject><subject>Pipelines</subject><subject>Probabilistic logic</subject><subject>Recurrent neural networks</subject><subject>Solid modeling</subject><subject>Time series analysis</subject><issn>2473-2397</issn><issn>2168-6831</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQhYMoWLQ_QPCQP7A1k-xmU2-lrbVQEWw9iSzZZFIj211JgtZ_75b24LvM4828OXyE3AAbAbDx3dPiZT3ijOcjIRQv8vyMDDhIlUkl4Lz3eSkyLsblJRnG-Ml6qQLGoAbEbD6QTpazOd10XVN3-3s6Cck7b7xuqG8TNo3fYmuQui5Q6yO2SbfbxrdbivsUcIcUv_sw0rd159KPDkh1a-lMJ03XmOL7Nblwuok4PM0r8vow30wfs9XzYjmdrDIDuUqZs4Y5p51VzIEujKmdshoEAyacK7WtmcUSwAijBJPS1FwBq52UXBW5kuKKwPGvCV2MAV31FfxOh98KWHUAVR1AVQdQ1QlU37k9djwi_rsv-jUrxR_y6GX5</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Gonzalez-Calabuig, Maria</creator><creator>Cortes-Andres, Jordi</creator><creator>Williams, Tristan Keith Ellis</creator><creator>Zhang, Mengxue</creator><creator>Pellicer-Valero, Oscar Jose</creator><creator>Fernandez-Torres, Miguel-Angel</creator><creator>Camps-Valls, Gustau</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1683-2138</orcidid><orcidid>https://orcid.org/0000-0002-9344-8191</orcidid><orcidid>https://orcid.org/0000-0003-0532-7013</orcidid><orcidid>https://orcid.org/0000-0002-0801-199X</orcidid><orcidid>https://orcid.org/0000-0002-0104-1029</orcidid><orcidid>https://orcid.org/0000-0003-1254-2387</orcidid></search><sort><creationdate>202406</creationdate><title>The AIDE Toolbox: Artificial intelligence for disentangling extreme events [Software and Data Sets]</title><author>Gonzalez-Calabuig, Maria ; Cortes-Andres, Jordi ; Williams, Tristan Keith Ellis ; Zhang, Mengxue ; Pellicer-Valero, Oscar Jose ; Fernandez-Torres, Miguel-Angel ; Camps-Valls, Gustau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-fdc0ffafd80f1a5ccbf8da130103ff7adb0de711c3c83066cb2810bf662854863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytical models</topic><topic>Anomaly detection</topic><topic>Artificial intelligence</topic><topic>Data models</topic><topic>Pipelines</topic><topic>Probabilistic logic</topic><topic>Recurrent neural networks</topic><topic>Solid modeling</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez-Calabuig, Maria</creatorcontrib><creatorcontrib>Cortes-Andres, Jordi</creatorcontrib><creatorcontrib>Williams, Tristan Keith Ellis</creatorcontrib><creatorcontrib>Zhang, Mengxue</creatorcontrib><creatorcontrib>Pellicer-Valero, Oscar Jose</creatorcontrib><creatorcontrib>Fernandez-Torres, Miguel-Angel</creatorcontrib><creatorcontrib>Camps-Valls, Gustau</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE geoscience and remote sensing magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gonzalez-Calabuig, Maria</au><au>Cortes-Andres, Jordi</au><au>Williams, Tristan Keith Ellis</au><au>Zhang, Mengxue</au><au>Pellicer-Valero, Oscar Jose</au><au>Fernandez-Torres, Miguel-Angel</au><au>Camps-Valls, Gustau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The AIDE Toolbox: Artificial intelligence for disentangling extreme events [Software and Data Sets]</atitle><jtitle>IEEE geoscience and remote sensing magazine</jtitle><stitle>GRSM</stitle><date>2024-06</date><risdate>2024</risdate><volume>12</volume><issue>2</issue><spage>113</spage><epage>118</epage><pages>113-118</pages><issn>2473-2397</issn><eissn>2168-6831</eissn><coden>IGRSCZ</coden><abstract>We introduce the Artificial Intelligence for Disentangling Extremes (AIDE) toolbox that allows for anomaly detection, extreme event analysis, and impact assessment in remote sensing and geoscience applications. AIDE integrates advanced machine learning (ML) models, ranging in complexity, assumptions, and sophistication, and can yield spatiotemporal explicit monitoring maps with probabilistic estimates. Supervised and unsupervised algorithms, deterministic and probabilistic, convolutional and recurrent neural networks (CNNs and RNNs), as well as methods based on density estimation, are covered by this framework. The open source toolbox is intended for scientists, engineers, and students with basic knowledge of remote sensing and geosciences working in anomaly detection, deep learning (DL), and explainable AI (XAI), and is available at https://github.com/IPL-UV/AIDE .</abstract><pub>IEEE</pub><doi>10.1109/MGRS.2024.3382544</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1683-2138</orcidid><orcidid>https://orcid.org/0000-0002-9344-8191</orcidid><orcidid>https://orcid.org/0000-0003-0532-7013</orcidid><orcidid>https://orcid.org/0000-0002-0801-199X</orcidid><orcidid>https://orcid.org/0000-0002-0104-1029</orcidid><orcidid>https://orcid.org/0000-0003-1254-2387</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2473-2397
ispartof IEEE geoscience and remote sensing magazine, 2024-06, Vol.12 (2), p.113-118
issn 2473-2397
2168-6831
language eng
recordid cdi_crossref_primary_10_1109_MGRS_2024_3382544
source IEEE Electronic Library (IEL)
subjects Analytical models
Anomaly detection
Artificial intelligence
Data models
Pipelines
Probabilistic logic
Recurrent neural networks
Solid modeling
Time series analysis
title The AIDE Toolbox: Artificial intelligence for disentangling extreme events [Software and Data Sets]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20AIDE%20Toolbox:%20Artificial%20intelligence%20for%20disentangling%20extreme%20events%20%5BSoftware%20and%20Data%20Sets%5D&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20magazine&rft.au=Gonzalez-Calabuig,%20Maria&rft.date=2024-06&rft.volume=12&rft.issue=2&rft.spage=113&rft.epage=118&rft.pages=113-118&rft.issn=2473-2397&rft.eissn=2168-6831&rft.coden=IGRSCZ&rft_id=info:doi/10.1109/MGRS.2024.3382544&rft_dat=%3Ccrossref_RIE%3E10_1109_MGRS_2024_3382544%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10582507&rfr_iscdi=true