Mochi: A Case Study in Translational Computer Science for High-Performance Computing Data Management
High-performance computing (HPC) has become an indispensable tool for solving diverse problems in science and engineering. Harnessing the power of HPC is not just a matter of efficient computation, however; it also calls for the efficient management of vast quantities of scientific data. This presen...
Gespeichert in:
Veröffentlicht in: | Computing in science & engineering 2023-07, Vol.25 (4), p.35-41 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 4 |
container_start_page | 35 |
container_title | Computing in science & engineering |
container_volume | 25 |
creator | Carns, Philip Dorier, Matthieu Latham, Rob Ross, Robert B. Snyder, Shane Soumagne, Jerome Parashar, Manish Abramson, David |
description | High-performance computing (HPC) has become an indispensable tool for solving diverse problems in science and engineering. Harnessing the power of HPC is not just a matter of efficient computation, however; it also calls for the efficient management of vast quantities of scientific data. This presents daunting challenges: rapidly evolving storage technology has motivated a shift toward increasingly complex, heterogeneous storage architectures that are difficult to optimize, and scientific data management needs have become every bit as diverse as the application domains that drive them. There is a clear need for agile, adaptable storage solutions that can be customized for the task and platform at hand. This motivated the establishment of the Mochi composable data service project. The Mochi project provides a library of robust, reusable, modular, and connectable data management components and microservices along with a methodology for composing them into specialized distributed data services. Mochi enables rapid deployment of custom data services with a high degree of developer productivity while still effectively leveraging cutting-edge HPC hardware. This article explores how the principles of translational computer science have been applied in practice in Mochi to achieve these goals. |
doi_str_mv | 10.1109/MCSE.2023.3326436 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MCSE_2023_3326436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10438050</ieee_id><sourcerecordid>2927607401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-311d67cb11d416edc39f3e2caf90fa5f4ed17197ca4be89dd85b5bfec3bbce0b3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWKs_QPCw4Dl1v5N4K7FaoUWhFbwtm81su6VJ6m5y6L83IR48zcvwvAPzRNE9wTNCcPa0zjeLGcWUzRijkjN5EU2IEGnMpPy-HDIlcSaJuI5uQjhgjHmaiUlUrhuzd89ojnIdAG3arjwjV6Ot13U46tY1tT6ivKlOXQsebYyD2gCyjUdLt9vHn-D7XOlhOVKu3qEX3Wq01rXeQQV1extdWX0McPc3p9HX62KbL-PVx9t7Pl_FhnLZxoyQUiam6AcnEkrDMsuAGm0zbLWwHEqSkCwxmheQZmWZikIUFgwrCgO4YNPocbx78s1PB6FVh6bz_QNB0YwmEicck54iI2V8E4IHq07eVdqfFcFqkKkGmWqQqf5k9p2HseMA4B_PWYoFZr-h7nHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927607401</pqid></control><display><type>article</type><title>Mochi: A Case Study in Translational Computer Science for High-Performance Computing Data Management</title><source>IEEE Electronic Library (IEL)</source><creator>Carns, Philip ; Dorier, Matthieu ; Latham, Rob ; Ross, Robert B. ; Snyder, Shane ; Soumagne, Jerome ; Parashar, Manish ; Abramson, David</creator><contributor>David Abramson ; Manish Parashar</contributor><creatorcontrib>Carns, Philip ; Dorier, Matthieu ; Latham, Rob ; Ross, Robert B. ; Snyder, Shane ; Soumagne, Jerome ; Parashar, Manish ; Abramson, David ; David Abramson ; Manish Parashar</creatorcontrib><description>High-performance computing (HPC) has become an indispensable tool for solving diverse problems in science and engineering. Harnessing the power of HPC is not just a matter of efficient computation, however; it also calls for the efficient management of vast quantities of scientific data. This presents daunting challenges: rapidly evolving storage technology has motivated a shift toward increasingly complex, heterogeneous storage architectures that are difficult to optimize, and scientific data management needs have become every bit as diverse as the application domains that drive them. There is a clear need for agile, adaptable storage solutions that can be customized for the task and platform at hand. This motivated the establishment of the Mochi composable data service project. The Mochi project provides a library of robust, reusable, modular, and connectable data management components and microservices along with a methodology for composing them into specialized distributed data services. Mochi enables rapid deployment of custom data services with a high degree of developer productivity while still effectively leveraging cutting-edge HPC hardware. This article explores how the principles of translational computer science have been applied in practice in Mochi to achieve these goals.</description><identifier>ISSN: 1521-9615</identifier><identifier>EISSN: 1558-366X</identifier><identifier>DOI: 10.1109/MCSE.2023.3326436</identifier><identifier>CODEN: CSENFA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer science ; Data management ; Database systems ; High performance computing ; Information management ; Translational research</subject><ispartof>Computing in science & engineering, 2023-07, Vol.25 (4), p.35-41</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-311d67cb11d416edc39f3e2caf90fa5f4ed17197ca4be89dd85b5bfec3bbce0b3</cites><orcidid>0009-0008-5973-4195 ; 0000-0001-9293-2021 ; 0000-0002-3963-9923 ; 0000-0002-5435-5857 ; 0000-0002-5285-6375 ; 0000-0002-5480-1669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10438050$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10438050$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><contributor>David Abramson</contributor><contributor>Manish Parashar</contributor><creatorcontrib>Carns, Philip</creatorcontrib><creatorcontrib>Dorier, Matthieu</creatorcontrib><creatorcontrib>Latham, Rob</creatorcontrib><creatorcontrib>Ross, Robert B.</creatorcontrib><creatorcontrib>Snyder, Shane</creatorcontrib><creatorcontrib>Soumagne, Jerome</creatorcontrib><creatorcontrib>Parashar, Manish</creatorcontrib><creatorcontrib>Abramson, David</creatorcontrib><title>Mochi: A Case Study in Translational Computer Science for High-Performance Computing Data Management</title><title>Computing in science & engineering</title><addtitle>CISE-M</addtitle><description>High-performance computing (HPC) has become an indispensable tool for solving diverse problems in science and engineering. Harnessing the power of HPC is not just a matter of efficient computation, however; it also calls for the efficient management of vast quantities of scientific data. This presents daunting challenges: rapidly evolving storage technology has motivated a shift toward increasingly complex, heterogeneous storage architectures that are difficult to optimize, and scientific data management needs have become every bit as diverse as the application domains that drive them. There is a clear need for agile, adaptable storage solutions that can be customized for the task and platform at hand. This motivated the establishment of the Mochi composable data service project. The Mochi project provides a library of robust, reusable, modular, and connectable data management components and microservices along with a methodology for composing them into specialized distributed data services. Mochi enables rapid deployment of custom data services with a high degree of developer productivity while still effectively leveraging cutting-edge HPC hardware. This article explores how the principles of translational computer science have been applied in practice in Mochi to achieve these goals.</description><subject>Computer science</subject><subject>Data management</subject><subject>Database systems</subject><subject>High performance computing</subject><subject>Information management</subject><subject>Translational research</subject><issn>1521-9615</issn><issn>1558-366X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhoMoWKs_QPCw4Dl1v5N4K7FaoUWhFbwtm81su6VJ6m5y6L83IR48zcvwvAPzRNE9wTNCcPa0zjeLGcWUzRijkjN5EU2IEGnMpPy-HDIlcSaJuI5uQjhgjHmaiUlUrhuzd89ojnIdAG3arjwjV6Ot13U46tY1tT6ivKlOXQsebYyD2gCyjUdLt9vHn-D7XOlhOVKu3qEX3Wq01rXeQQV1extdWX0McPc3p9HX62KbL-PVx9t7Pl_FhnLZxoyQUiam6AcnEkrDMsuAGm0zbLWwHEqSkCwxmheQZmWZikIUFgwrCgO4YNPocbx78s1PB6FVh6bz_QNB0YwmEicck54iI2V8E4IHq07eVdqfFcFqkKkGmWqQqf5k9p2HseMA4B_PWYoFZr-h7nHQ</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Carns, Philip</creator><creator>Dorier, Matthieu</creator><creator>Latham, Rob</creator><creator>Ross, Robert B.</creator><creator>Snyder, Shane</creator><creator>Soumagne, Jerome</creator><creator>Parashar, Manish</creator><creator>Abramson, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0008-5973-4195</orcidid><orcidid>https://orcid.org/0000-0001-9293-2021</orcidid><orcidid>https://orcid.org/0000-0002-3963-9923</orcidid><orcidid>https://orcid.org/0000-0002-5435-5857</orcidid><orcidid>https://orcid.org/0000-0002-5285-6375</orcidid><orcidid>https://orcid.org/0000-0002-5480-1669</orcidid></search><sort><creationdate>202307</creationdate><title>Mochi: A Case Study in Translational Computer Science for High-Performance Computing Data Management</title><author>Carns, Philip ; Dorier, Matthieu ; Latham, Rob ; Ross, Robert B. ; Snyder, Shane ; Soumagne, Jerome ; Parashar, Manish ; Abramson, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-311d67cb11d416edc39f3e2caf90fa5f4ed17197ca4be89dd85b5bfec3bbce0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer science</topic><topic>Data management</topic><topic>Database systems</topic><topic>High performance computing</topic><topic>Information management</topic><topic>Translational research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carns, Philip</creatorcontrib><creatorcontrib>Dorier, Matthieu</creatorcontrib><creatorcontrib>Latham, Rob</creatorcontrib><creatorcontrib>Ross, Robert B.</creatorcontrib><creatorcontrib>Snyder, Shane</creatorcontrib><creatorcontrib>Soumagne, Jerome</creatorcontrib><creatorcontrib>Parashar, Manish</creatorcontrib><creatorcontrib>Abramson, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computing in science & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carns, Philip</au><au>Dorier, Matthieu</au><au>Latham, Rob</au><au>Ross, Robert B.</au><au>Snyder, Shane</au><au>Soumagne, Jerome</au><au>Parashar, Manish</au><au>Abramson, David</au><au>David Abramson</au><au>Manish Parashar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mochi: A Case Study in Translational Computer Science for High-Performance Computing Data Management</atitle><jtitle>Computing in science & engineering</jtitle><stitle>CISE-M</stitle><date>2023-07</date><risdate>2023</risdate><volume>25</volume><issue>4</issue><spage>35</spage><epage>41</epage><pages>35-41</pages><issn>1521-9615</issn><eissn>1558-366X</eissn><coden>CSENFA</coden><abstract>High-performance computing (HPC) has become an indispensable tool for solving diverse problems in science and engineering. Harnessing the power of HPC is not just a matter of efficient computation, however; it also calls for the efficient management of vast quantities of scientific data. This presents daunting challenges: rapidly evolving storage technology has motivated a shift toward increasingly complex, heterogeneous storage architectures that are difficult to optimize, and scientific data management needs have become every bit as diverse as the application domains that drive them. There is a clear need for agile, adaptable storage solutions that can be customized for the task and platform at hand. This motivated the establishment of the Mochi composable data service project. The Mochi project provides a library of robust, reusable, modular, and connectable data management components and microservices along with a methodology for composing them into specialized distributed data services. Mochi enables rapid deployment of custom data services with a high degree of developer productivity while still effectively leveraging cutting-edge HPC hardware. This article explores how the principles of translational computer science have been applied in practice in Mochi to achieve these goals.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MCSE.2023.3326436</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0008-5973-4195</orcidid><orcidid>https://orcid.org/0000-0001-9293-2021</orcidid><orcidid>https://orcid.org/0000-0002-3963-9923</orcidid><orcidid>https://orcid.org/0000-0002-5435-5857</orcidid><orcidid>https://orcid.org/0000-0002-5285-6375</orcidid><orcidid>https://orcid.org/0000-0002-5480-1669</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1521-9615 |
ispartof | Computing in science & engineering, 2023-07, Vol.25 (4), p.35-41 |
issn | 1521-9615 1558-366X |
language | eng |
recordid | cdi_crossref_primary_10_1109_MCSE_2023_3326436 |
source | IEEE Electronic Library (IEL) |
subjects | Computer science Data management Database systems High performance computing Information management Translational research |
title | Mochi: A Case Study in Translational Computer Science for High-Performance Computing Data Management |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mochi:%20A%20Case%20Study%20in%20Translational%20Computer%20Science%20for%20High-Performance%20Computing%20Data%20Management&rft.jtitle=Computing%20in%20science%20&%20engineering&rft.au=Carns,%20Philip&rft.date=2023-07&rft.volume=25&rft.issue=4&rft.spage=35&rft.epage=41&rft.pages=35-41&rft.issn=1521-9615&rft.eissn=1558-366X&rft.coden=CSENFA&rft_id=info:doi/10.1109/MCSE.2023.3326436&rft_dat=%3Cproquest_RIE%3E2927607401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927607401&rft_id=info:pmid/&rft_ieee_id=10438050&rfr_iscdi=true |