Performance Measurements Within Asynchronous Task-Based Runtime Systems: A Double White Dwarf Merger as an Application

Analyzing performance within asynchronous many-task-based runtime systems is challenging because millions of tasks are launched concurrently. Especially for long-term runs, the amount of data collected becomes overwhelming. We study HPX and its performance-counter framework and autonomic performance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computing in science & engineering 2021-05, Vol.23 (3), p.73-81
Hauptverfasser: Diehl, Patrick, Marcello, Dominic, Amini, Parsa, Kaiser, Hartmut, Shiber, Sagiv, Clayton, Geoffrey C., Frank, Juhan, Dais, Gregor, Pfluger, Dirk, Eder, David, Koniges, Alice, Huck, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue 3
container_start_page 73
container_title Computing in science & engineering
container_volume 23
creator Diehl, Patrick
Marcello, Dominic
Amini, Parsa
Kaiser, Hartmut
Shiber, Sagiv
Clayton, Geoffrey C.
Frank, Juhan
Dais, Gregor
Pfluger, Dirk
Eder, David
Koniges, Alice
Huck, Kevin
description Analyzing performance within asynchronous many-task-based runtime systems is challenging because millions of tasks are launched concurrently. Especially for long-term runs, the amount of data collected becomes overwhelming. We study HPX and its performance-counter framework and autonomic performance environment for Exascale to collect performance data and energy consumption. We added HPX application-specific performance counters to the Octo-Tiger full 3-D adaptive multigrid code astrophysics application. This enables the combined visualization of physical and performance data to highlight bottlenecks with respect to different solvers. We examine the overhead introduced by these measurements, which is around 1%, with respect to the overall application runtime. We perform a resolution study for four different levels of refinement and analyze the application's performance with respect to adaptive grid refinement. The measurements’ overheads are small, enabling the combined use of performance data and physical properties with the goal of improving the code's performance. All runs were obtained on NERSC's Cori, Louisiana Optical Network Infrastructure's QueenBee2, and Indiana University's Big Red 3.
doi_str_mv 10.1109/MCSE.2021.3073626
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MCSE_2021_3073626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9405442</ieee_id><sourcerecordid>2542503725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-1c6dba0d88ff52d270df9f4e939f31e21ffed340d7694a0042f8e751c30161b53</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpfubBrrTlIbUC0aKyi9xkTF0ap9gOqH9PoiJWM4tz72gOQpeUDCgl2c1sNJ8MGGF0wEnCYxYfoR6VMo14HL8fdzujURZTeYrOvN8QQkSayR76fgGna1cpWwCegfKNgwps8HhpwtpYPPR7W6xdbevG44Xyn9Gd8lDi18YGUwGe732Ayt_iIR7XzWoLeLk2AfD4RzndNroPcFh5rNqq3W5rChVMbc_RiVZbDxd_s4_e7ieL0WM0fX54Gg2nUcHSNES0iMuVImWaai1ZyRJS6kwLyHimOQVGtYaSC1ImcSZU-xPTKSSSFpzQmK4k76PrQ-_O1V8N-JBv6sbZ9mTOpGCS8IR1FD1Qhau9d6DznTOVcvuckrzTm3d6805v_qe3zVwdMgYA_vlMECkE47_PCHcp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542503725</pqid></control><display><type>article</type><title>Performance Measurements Within Asynchronous Task-Based Runtime Systems: A Double White Dwarf Merger as an Application</title><source>IEEE Electronic Library (IEL)</source><creator>Diehl, Patrick ; Marcello, Dominic ; Amini, Parsa ; Kaiser, Hartmut ; Shiber, Sagiv ; Clayton, Geoffrey C. ; Frank, Juhan ; Dais, Gregor ; Pfluger, Dirk ; Eder, David ; Koniges, Alice ; Huck, Kevin</creator><creatorcontrib>Diehl, Patrick ; Marcello, Dominic ; Amini, Parsa ; Kaiser, Hartmut ; Shiber, Sagiv ; Clayton, Geoffrey C. ; Frank, Juhan ; Dais, Gregor ; Pfluger, Dirk ; Eder, David ; Koniges, Alice ; Huck, Kevin</creatorcontrib><description>Analyzing performance within asynchronous many-task-based runtime systems is challenging because millions of tasks are launched concurrently. Especially for long-term runs, the amount of data collected becomes overwhelming. We study HPX and its performance-counter framework and autonomic performance environment for Exascale to collect performance data and energy consumption. We added HPX application-specific performance counters to the Octo-Tiger full 3-D adaptive multigrid code astrophysics application. This enables the combined visualization of physical and performance data to highlight bottlenecks with respect to different solvers. We examine the overhead introduced by these measurements, which is around 1%, with respect to the overall application runtime. We perform a resolution study for four different levels of refinement and analyze the application's performance with respect to adaptive grid refinement. The measurements’ overheads are small, enabling the combined use of performance data and physical properties with the goal of improving the code's performance. All runs were obtained on NERSC's Cori, Louisiana Optical Network Infrastructure's QueenBee2, and Indiana University's Big Red 3.</description><identifier>ISSN: 1521-9615</identifier><identifier>EISSN: 1558-366X</identifier><identifier>DOI: 10.1109/MCSE.2021.3073626</identifier><identifier>CODEN: CSENFA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Astrophysics ; Computational modeling ; Corporate acquisitions ; Data models ; Data visualization ; Energy consumption ; Extraterrestrial measurements ; Grid refinement (mathematics) ; Optical communication ; Physical properties ; Runtime ; Task analysis ; White dwarf stars</subject><ispartof>Computing in science &amp; engineering, 2021-05, Vol.23 (3), p.73-81</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-1c6dba0d88ff52d270df9f4e939f31e21ffed340d7694a0042f8e751c30161b53</cites><orcidid>0000-0002-4360-0212 ; 0000-0003-3922-8419 ; 0000-0001-6107-0887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9405442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9405442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Diehl, Patrick</creatorcontrib><creatorcontrib>Marcello, Dominic</creatorcontrib><creatorcontrib>Amini, Parsa</creatorcontrib><creatorcontrib>Kaiser, Hartmut</creatorcontrib><creatorcontrib>Shiber, Sagiv</creatorcontrib><creatorcontrib>Clayton, Geoffrey C.</creatorcontrib><creatorcontrib>Frank, Juhan</creatorcontrib><creatorcontrib>Dais, Gregor</creatorcontrib><creatorcontrib>Pfluger, Dirk</creatorcontrib><creatorcontrib>Eder, David</creatorcontrib><creatorcontrib>Koniges, Alice</creatorcontrib><creatorcontrib>Huck, Kevin</creatorcontrib><title>Performance Measurements Within Asynchronous Task-Based Runtime Systems: A Double White Dwarf Merger as an Application</title><title>Computing in science &amp; engineering</title><addtitle>CISE-M</addtitle><description>Analyzing performance within asynchronous many-task-based runtime systems is challenging because millions of tasks are launched concurrently. Especially for long-term runs, the amount of data collected becomes overwhelming. We study HPX and its performance-counter framework and autonomic performance environment for Exascale to collect performance data and energy consumption. We added HPX application-specific performance counters to the Octo-Tiger full 3-D adaptive multigrid code astrophysics application. This enables the combined visualization of physical and performance data to highlight bottlenecks with respect to different solvers. We examine the overhead introduced by these measurements, which is around 1%, with respect to the overall application runtime. We perform a resolution study for four different levels of refinement and analyze the application's performance with respect to adaptive grid refinement. The measurements’ overheads are small, enabling the combined use of performance data and physical properties with the goal of improving the code's performance. All runs were obtained on NERSC's Cori, Louisiana Optical Network Infrastructure's QueenBee2, and Indiana University's Big Red 3.</description><subject>Astrophysics</subject><subject>Computational modeling</subject><subject>Corporate acquisitions</subject><subject>Data models</subject><subject>Data visualization</subject><subject>Energy consumption</subject><subject>Extraterrestrial measurements</subject><subject>Grid refinement (mathematics)</subject><subject>Optical communication</subject><subject>Physical properties</subject><subject>Runtime</subject><subject>Task analysis</subject><subject>White dwarf stars</subject><issn>1521-9615</issn><issn>1558-366X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpfubBrrTlIbUC0aKyi9xkTF0ap9gOqH9PoiJWM4tz72gOQpeUDCgl2c1sNJ8MGGF0wEnCYxYfoR6VMo14HL8fdzujURZTeYrOvN8QQkSayR76fgGna1cpWwCegfKNgwps8HhpwtpYPPR7W6xdbevG44Xyn9Gd8lDi18YGUwGe732Ayt_iIR7XzWoLeLk2AfD4RzndNroPcFh5rNqq3W5rChVMbc_RiVZbDxd_s4_e7ieL0WM0fX54Gg2nUcHSNES0iMuVImWaai1ZyRJS6kwLyHimOQVGtYaSC1ImcSZU-xPTKSSSFpzQmK4k76PrQ-_O1V8N-JBv6sbZ9mTOpGCS8IR1FD1Qhau9d6DznTOVcvuckrzTm3d6805v_qe3zVwdMgYA_vlMECkE47_PCHcp</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Diehl, Patrick</creator><creator>Marcello, Dominic</creator><creator>Amini, Parsa</creator><creator>Kaiser, Hartmut</creator><creator>Shiber, Sagiv</creator><creator>Clayton, Geoffrey C.</creator><creator>Frank, Juhan</creator><creator>Dais, Gregor</creator><creator>Pfluger, Dirk</creator><creator>Eder, David</creator><creator>Koniges, Alice</creator><creator>Huck, Kevin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4360-0212</orcidid><orcidid>https://orcid.org/0000-0003-3922-8419</orcidid><orcidid>https://orcid.org/0000-0001-6107-0887</orcidid></search><sort><creationdate>202105</creationdate><title>Performance Measurements Within Asynchronous Task-Based Runtime Systems: A Double White Dwarf Merger as an Application</title><author>Diehl, Patrick ; Marcello, Dominic ; Amini, Parsa ; Kaiser, Hartmut ; Shiber, Sagiv ; Clayton, Geoffrey C. ; Frank, Juhan ; Dais, Gregor ; Pfluger, Dirk ; Eder, David ; Koniges, Alice ; Huck, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-1c6dba0d88ff52d270df9f4e939f31e21ffed340d7694a0042f8e751c30161b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Computational modeling</topic><topic>Corporate acquisitions</topic><topic>Data models</topic><topic>Data visualization</topic><topic>Energy consumption</topic><topic>Extraterrestrial measurements</topic><topic>Grid refinement (mathematics)</topic><topic>Optical communication</topic><topic>Physical properties</topic><topic>Runtime</topic><topic>Task analysis</topic><topic>White dwarf stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diehl, Patrick</creatorcontrib><creatorcontrib>Marcello, Dominic</creatorcontrib><creatorcontrib>Amini, Parsa</creatorcontrib><creatorcontrib>Kaiser, Hartmut</creatorcontrib><creatorcontrib>Shiber, Sagiv</creatorcontrib><creatorcontrib>Clayton, Geoffrey C.</creatorcontrib><creatorcontrib>Frank, Juhan</creatorcontrib><creatorcontrib>Dais, Gregor</creatorcontrib><creatorcontrib>Pfluger, Dirk</creatorcontrib><creatorcontrib>Eder, David</creatorcontrib><creatorcontrib>Koniges, Alice</creatorcontrib><creatorcontrib>Huck, Kevin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computing in science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Diehl, Patrick</au><au>Marcello, Dominic</au><au>Amini, Parsa</au><au>Kaiser, Hartmut</au><au>Shiber, Sagiv</au><au>Clayton, Geoffrey C.</au><au>Frank, Juhan</au><au>Dais, Gregor</au><au>Pfluger, Dirk</au><au>Eder, David</au><au>Koniges, Alice</au><au>Huck, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Measurements Within Asynchronous Task-Based Runtime Systems: A Double White Dwarf Merger as an Application</atitle><jtitle>Computing in science &amp; engineering</jtitle><stitle>CISE-M</stitle><date>2021-05</date><risdate>2021</risdate><volume>23</volume><issue>3</issue><spage>73</spage><epage>81</epage><pages>73-81</pages><issn>1521-9615</issn><eissn>1558-366X</eissn><coden>CSENFA</coden><abstract>Analyzing performance within asynchronous many-task-based runtime systems is challenging because millions of tasks are launched concurrently. Especially for long-term runs, the amount of data collected becomes overwhelming. We study HPX and its performance-counter framework and autonomic performance environment for Exascale to collect performance data and energy consumption. We added HPX application-specific performance counters to the Octo-Tiger full 3-D adaptive multigrid code astrophysics application. This enables the combined visualization of physical and performance data to highlight bottlenecks with respect to different solvers. We examine the overhead introduced by these measurements, which is around 1%, with respect to the overall application runtime. We perform a resolution study for four different levels of refinement and analyze the application's performance with respect to adaptive grid refinement. The measurements’ overheads are small, enabling the combined use of performance data and physical properties with the goal of improving the code's performance. All runs were obtained on NERSC's Cori, Louisiana Optical Network Infrastructure's QueenBee2, and Indiana University's Big Red 3.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MCSE.2021.3073626</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4360-0212</orcidid><orcidid>https://orcid.org/0000-0003-3922-8419</orcidid><orcidid>https://orcid.org/0000-0001-6107-0887</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1521-9615
ispartof Computing in science & engineering, 2021-05, Vol.23 (3), p.73-81
issn 1521-9615
1558-366X
language eng
recordid cdi_crossref_primary_10_1109_MCSE_2021_3073626
source IEEE Electronic Library (IEL)
subjects Astrophysics
Computational modeling
Corporate acquisitions
Data models
Data visualization
Energy consumption
Extraterrestrial measurements
Grid refinement (mathematics)
Optical communication
Physical properties
Runtime
Task analysis
White dwarf stars
title Performance Measurements Within Asynchronous Task-Based Runtime Systems: A Double White Dwarf Merger as an Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Measurements%20Within%20Asynchronous%20Task-Based%20Runtime%20Systems:%20A%20Double%20White%20Dwarf%20Merger%20as%20an%20Application&rft.jtitle=Computing%20in%20science%20&%20engineering&rft.au=Diehl,%20Patrick&rft.date=2021-05&rft.volume=23&rft.issue=3&rft.spage=73&rft.epage=81&rft.pages=73-81&rft.issn=1521-9615&rft.eissn=1558-366X&rft.coden=CSENFA&rft_id=info:doi/10.1109/MCSE.2021.3073626&rft_dat=%3Cproquest_RIE%3E2542503725%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542503725&rft_id=info:pmid/&rft_ieee_id=9405442&rfr_iscdi=true