Fault State Recognition of Rolling Bearing Based Fully Convolutional Network

To solve the problem of determining the fault damage of rolling bearings, a fault diagnosis method for intelligent classification of vibration signals with different fault locations and different damage degrees is proposed. First, the research object is the laboratory dataset. By transforming into s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computing in science & engineering 2019-09, Vol.21 (5), p.55-63
Hauptverfasser: Zhang, Wendong, Zhang, Fan, Chen, Wei, Jiang, Yongquan, Song, Dongli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 5
container_start_page 55
container_title Computing in science & engineering
container_volume 21
creator Zhang, Wendong
Zhang, Fan
Chen, Wei
Jiang, Yongquan
Song, Dongli
description To solve the problem of determining the fault damage of rolling bearings, a fault diagnosis method for intelligent classification of vibration signals with different fault locations and different damage degrees is proposed. First, the research object is the laboratory dataset. By transforming into spectrograms, this can preserve the original information of the time-domain signal to a greater extent. Then, we use a deep, fully convolutional neural network to train the dataset. It has a rapid convergence and the accuracy is up to 100%. Second, in order to verify the correctness of the model, we take the service data on the real line as the research object, and the accuracy rate is as high as 99.22%. Compared with some other machine learning algorithms, our method boasts better generalization capability and accuracy and could be applied to practical engineering.
doi_str_mv 10.1109/MCSE.2018.110113254
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MCSE_2018_110113254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8254321</ieee_id><sourcerecordid>2275582075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-6913cfbf42eda20a34a06bd8f04b8e3bf51af61afdc4a7d8c9d1967a3f6fe5083</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKd_wV4CPnfmR5Omj1o2FarCpuBbSNtkdMZmJqmy_97WyR6Ou-O-3-PuA8AMoznGKL95KtaLOUFYjC3GlLD0BEwwYyKhnL-fjjXBSc4xOwcXIWwRQqnI2QSUS9XbCNdRRQ1Xunabro2t66AzcOWsbbsNvNPK_2UVdAOXvbV7WLju29l-lCoLn3X8cf7jEpwZZYO--s9T8LZcvBYPSfly_1jclklN8iwmPMe0NpVJiW4UQYqmCvGqEQalldC0Mgwrw4do6lRljajzBuc8U9RwoxkSdAquD3t33n31OkS5db0fDgmSkGz4mqCMDSp6UNXeheC1kTvffiq_lxjJEZscsckRmzxiG1yzg6vVWh8dYhwRTH8BKbVpuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275582075</pqid></control><display><type>article</type><title>Fault State Recognition of Rolling Bearing Based Fully Convolutional Network</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Wendong ; Zhang, Fan ; Chen, Wei ; Jiang, Yongquan ; Song, Dongli</creator><creatorcontrib>Zhang, Wendong ; Zhang, Fan ; Chen, Wei ; Jiang, Yongquan ; Song, Dongli</creatorcontrib><description>To solve the problem of determining the fault damage of rolling bearings, a fault diagnosis method for intelligent classification of vibration signals with different fault locations and different damage degrees is proposed. First, the research object is the laboratory dataset. By transforming into spectrograms, this can preserve the original information of the time-domain signal to a greater extent. Then, we use a deep, fully convolutional neural network to train the dataset. It has a rapid convergence and the accuracy is up to 100%. Second, in order to verify the correctness of the model, we take the service data on the real line as the research object, and the accuracy rate is as high as 99.22%. Compared with some other machine learning algorithms, our method boasts better generalization capability and accuracy and could be applied to practical engineering.</description><identifier>ISSN: 1521-9615</identifier><identifier>EISSN: 1558-366X</identifier><identifier>DOI: 10.1109/MCSE.2018.110113254</identifier><identifier>CODEN: CSENFA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Convolutional neural networks ; Datasets ; deep fault diagnosis system ; deep learning ; Fault diagnosis ; fault state recognition ; Feature extraction ; Machine learning ; Object recognition ; Roller bearings ; rolling bearing ; Rolling bearings ; Signal classification ; Spectrograms ; Time-frequency analysis</subject><ispartof>Computing in science &amp; engineering, 2019-09, Vol.21 (5), p.55-63</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-6913cfbf42eda20a34a06bd8f04b8e3bf51af61afdc4a7d8c9d1967a3f6fe5083</citedby><cites>FETCH-LOGICAL-c297t-6913cfbf42eda20a34a06bd8f04b8e3bf51af61afdc4a7d8c9d1967a3f6fe5083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8254321$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8254321$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Wendong</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Jiang, Yongquan</creatorcontrib><creatorcontrib>Song, Dongli</creatorcontrib><title>Fault State Recognition of Rolling Bearing Based Fully Convolutional Network</title><title>Computing in science &amp; engineering</title><addtitle>CISE-M</addtitle><description>To solve the problem of determining the fault damage of rolling bearings, a fault diagnosis method for intelligent classification of vibration signals with different fault locations and different damage degrees is proposed. First, the research object is the laboratory dataset. By transforming into spectrograms, this can preserve the original information of the time-domain signal to a greater extent. Then, we use a deep, fully convolutional neural network to train the dataset. It has a rapid convergence and the accuracy is up to 100%. Second, in order to verify the correctness of the model, we take the service data on the real line as the research object, and the accuracy rate is as high as 99.22%. Compared with some other machine learning algorithms, our method boasts better generalization capability and accuracy and could be applied to practical engineering.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>deep fault diagnosis system</subject><subject>deep learning</subject><subject>Fault diagnosis</subject><subject>fault state recognition</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Roller bearings</subject><subject>rolling bearing</subject><subject>Rolling bearings</subject><subject>Signal classification</subject><subject>Spectrograms</subject><subject>Time-frequency analysis</subject><issn>1521-9615</issn><issn>1558-366X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKd_wV4CPnfmR5Omj1o2FarCpuBbSNtkdMZmJqmy_97WyR6Ou-O-3-PuA8AMoznGKL95KtaLOUFYjC3GlLD0BEwwYyKhnL-fjjXBSc4xOwcXIWwRQqnI2QSUS9XbCNdRRQ1Xunabro2t66AzcOWsbbsNvNPK_2UVdAOXvbV7WLju29l-lCoLn3X8cf7jEpwZZYO--s9T8LZcvBYPSfly_1jclklN8iwmPMe0NpVJiW4UQYqmCvGqEQalldC0Mgwrw4do6lRljajzBuc8U9RwoxkSdAquD3t33n31OkS5db0fDgmSkGz4mqCMDSp6UNXeheC1kTvffiq_lxjJEZscsckRmzxiG1yzg6vVWh8dYhwRTH8BKbVpuQ</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Zhang, Wendong</creator><creator>Zhang, Fan</creator><creator>Chen, Wei</creator><creator>Jiang, Yongquan</creator><creator>Song, Dongli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201909</creationdate><title>Fault State Recognition of Rolling Bearing Based Fully Convolutional Network</title><author>Zhang, Wendong ; Zhang, Fan ; Chen, Wei ; Jiang, Yongquan ; Song, Dongli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-6913cfbf42eda20a34a06bd8f04b8e3bf51af61afdc4a7d8c9d1967a3f6fe5083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>deep fault diagnosis system</topic><topic>deep learning</topic><topic>Fault diagnosis</topic><topic>fault state recognition</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Roller bearings</topic><topic>rolling bearing</topic><topic>Rolling bearings</topic><topic>Signal classification</topic><topic>Spectrograms</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wendong</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Jiang, Yongquan</creatorcontrib><creatorcontrib>Song, Dongli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computing in science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Wendong</au><au>Zhang, Fan</au><au>Chen, Wei</au><au>Jiang, Yongquan</au><au>Song, Dongli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault State Recognition of Rolling Bearing Based Fully Convolutional Network</atitle><jtitle>Computing in science &amp; engineering</jtitle><stitle>CISE-M</stitle><date>2019-09</date><risdate>2019</risdate><volume>21</volume><issue>5</issue><spage>55</spage><epage>63</epage><pages>55-63</pages><issn>1521-9615</issn><eissn>1558-366X</eissn><coden>CSENFA</coden><abstract>To solve the problem of determining the fault damage of rolling bearings, a fault diagnosis method for intelligent classification of vibration signals with different fault locations and different damage degrees is proposed. First, the research object is the laboratory dataset. By transforming into spectrograms, this can preserve the original information of the time-domain signal to a greater extent. Then, we use a deep, fully convolutional neural network to train the dataset. It has a rapid convergence and the accuracy is up to 100%. Second, in order to verify the correctness of the model, we take the service data on the real line as the research object, and the accuracy rate is as high as 99.22%. Compared with some other machine learning algorithms, our method boasts better generalization capability and accuracy and could be applied to practical engineering.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MCSE.2018.110113254</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1521-9615
ispartof Computing in science & engineering, 2019-09, Vol.21 (5), p.55-63
issn 1521-9615
1558-366X
language eng
recordid cdi_crossref_primary_10_1109_MCSE_2018_110113254
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Artificial neural networks
Convolutional neural networks
Datasets
deep fault diagnosis system
deep learning
Fault diagnosis
fault state recognition
Feature extraction
Machine learning
Object recognition
Roller bearings
rolling bearing
Rolling bearings
Signal classification
Spectrograms
Time-frequency analysis
title Fault State Recognition of Rolling Bearing Based Fully Convolutional Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20State%20Recognition%20of%20Rolling%20Bearing%20Based%20Fully%20Convolutional%20Network&rft.jtitle=Computing%20in%20science%20&%20engineering&rft.au=Zhang,%20Wendong&rft.date=2019-09&rft.volume=21&rft.issue=5&rft.spage=55&rft.epage=63&rft.pages=55-63&rft.issn=1521-9615&rft.eissn=1558-366X&rft.coden=CSENFA&rft_id=info:doi/10.1109/MCSE.2018.110113254&rft_dat=%3Cproquest_RIE%3E2275582075%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275582075&rft_id=info:pmid/&rft_ieee_id=8254321&rfr_iscdi=true