Fault State Recognition of Rolling Bearing Based Fully Convolutional Network
To solve the problem of determining the fault damage of rolling bearings, a fault diagnosis method for intelligent classification of vibration signals with different fault locations and different damage degrees is proposed. First, the research object is the laboratory dataset. By transforming into s...
Gespeichert in:
Veröffentlicht in: | Computing in science & engineering 2019-09, Vol.21 (5), p.55-63 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63 |
---|---|
container_issue | 5 |
container_start_page | 55 |
container_title | Computing in science & engineering |
container_volume | 21 |
creator | Zhang, Wendong Zhang, Fan Chen, Wei Jiang, Yongquan Song, Dongli |
description | To solve the problem of determining the fault damage of rolling bearings, a fault diagnosis method for intelligent classification of vibration signals with different fault locations and different damage degrees is proposed. First, the research object is the laboratory dataset. By transforming into spectrograms, this can preserve the original information of the time-domain signal to a greater extent. Then, we use a deep, fully convolutional neural network to train the dataset. It has a rapid convergence and the accuracy is up to 100%. Second, in order to verify the correctness of the model, we take the service data on the real line as the research object, and the accuracy rate is as high as 99.22%. Compared with some other machine learning algorithms, our method boasts better generalization capability and accuracy and could be applied to practical engineering. |
doi_str_mv | 10.1109/MCSE.2018.110113254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MCSE_2018_110113254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8254321</ieee_id><sourcerecordid>2275582075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-6913cfbf42eda20a34a06bd8f04b8e3bf51af61afdc4a7d8c9d1967a3f6fe5083</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKd_wV4CPnfmR5Omj1o2FarCpuBbSNtkdMZmJqmy_97WyR6Ou-O-3-PuA8AMoznGKL95KtaLOUFYjC3GlLD0BEwwYyKhnL-fjjXBSc4xOwcXIWwRQqnI2QSUS9XbCNdRRQ1Xunabro2t66AzcOWsbbsNvNPK_2UVdAOXvbV7WLju29l-lCoLn3X8cf7jEpwZZYO--s9T8LZcvBYPSfly_1jclklN8iwmPMe0NpVJiW4UQYqmCvGqEQalldC0Mgwrw4do6lRljajzBuc8U9RwoxkSdAquD3t33n31OkS5db0fDgmSkGz4mqCMDSp6UNXeheC1kTvffiq_lxjJEZscsckRmzxiG1yzg6vVWh8dYhwRTH8BKbVpuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275582075</pqid></control><display><type>article</type><title>Fault State Recognition of Rolling Bearing Based Fully Convolutional Network</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Wendong ; Zhang, Fan ; Chen, Wei ; Jiang, Yongquan ; Song, Dongli</creator><creatorcontrib>Zhang, Wendong ; Zhang, Fan ; Chen, Wei ; Jiang, Yongquan ; Song, Dongli</creatorcontrib><description>To solve the problem of determining the fault damage of rolling bearings, a fault diagnosis method for intelligent classification of vibration signals with different fault locations and different damage degrees is proposed. First, the research object is the laboratory dataset. By transforming into spectrograms, this can preserve the original information of the time-domain signal to a greater extent. Then, we use a deep, fully convolutional neural network to train the dataset. It has a rapid convergence and the accuracy is up to 100%. Second, in order to verify the correctness of the model, we take the service data on the real line as the research object, and the accuracy rate is as high as 99.22%. Compared with some other machine learning algorithms, our method boasts better generalization capability and accuracy and could be applied to practical engineering.</description><identifier>ISSN: 1521-9615</identifier><identifier>EISSN: 1558-366X</identifier><identifier>DOI: 10.1109/MCSE.2018.110113254</identifier><identifier>CODEN: CSENFA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Convolutional neural networks ; Datasets ; deep fault diagnosis system ; deep learning ; Fault diagnosis ; fault state recognition ; Feature extraction ; Machine learning ; Object recognition ; Roller bearings ; rolling bearing ; Rolling bearings ; Signal classification ; Spectrograms ; Time-frequency analysis</subject><ispartof>Computing in science & engineering, 2019-09, Vol.21 (5), p.55-63</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-6913cfbf42eda20a34a06bd8f04b8e3bf51af61afdc4a7d8c9d1967a3f6fe5083</citedby><cites>FETCH-LOGICAL-c297t-6913cfbf42eda20a34a06bd8f04b8e3bf51af61afdc4a7d8c9d1967a3f6fe5083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8254321$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8254321$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Wendong</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Jiang, Yongquan</creatorcontrib><creatorcontrib>Song, Dongli</creatorcontrib><title>Fault State Recognition of Rolling Bearing Based Fully Convolutional Network</title><title>Computing in science & engineering</title><addtitle>CISE-M</addtitle><description>To solve the problem of determining the fault damage of rolling bearings, a fault diagnosis method for intelligent classification of vibration signals with different fault locations and different damage degrees is proposed. First, the research object is the laboratory dataset. By transforming into spectrograms, this can preserve the original information of the time-domain signal to a greater extent. Then, we use a deep, fully convolutional neural network to train the dataset. It has a rapid convergence and the accuracy is up to 100%. Second, in order to verify the correctness of the model, we take the service data on the real line as the research object, and the accuracy rate is as high as 99.22%. Compared with some other machine learning algorithms, our method boasts better generalization capability and accuracy and could be applied to practical engineering.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>deep fault diagnosis system</subject><subject>deep learning</subject><subject>Fault diagnosis</subject><subject>fault state recognition</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Roller bearings</subject><subject>rolling bearing</subject><subject>Rolling bearings</subject><subject>Signal classification</subject><subject>Spectrograms</subject><subject>Time-frequency analysis</subject><issn>1521-9615</issn><issn>1558-366X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKd_wV4CPnfmR5Omj1o2FarCpuBbSNtkdMZmJqmy_97WyR6Ou-O-3-PuA8AMoznGKL95KtaLOUFYjC3GlLD0BEwwYyKhnL-fjjXBSc4xOwcXIWwRQqnI2QSUS9XbCNdRRQ1Xunabro2t66AzcOWsbbsNvNPK_2UVdAOXvbV7WLju29l-lCoLn3X8cf7jEpwZZYO--s9T8LZcvBYPSfly_1jclklN8iwmPMe0NpVJiW4UQYqmCvGqEQalldC0Mgwrw4do6lRljajzBuc8U9RwoxkSdAquD3t33n31OkS5db0fDgmSkGz4mqCMDSp6UNXeheC1kTvffiq_lxjJEZscsckRmzxiG1yzg6vVWh8dYhwRTH8BKbVpuQ</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Zhang, Wendong</creator><creator>Zhang, Fan</creator><creator>Chen, Wei</creator><creator>Jiang, Yongquan</creator><creator>Song, Dongli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201909</creationdate><title>Fault State Recognition of Rolling Bearing Based Fully Convolutional Network</title><author>Zhang, Wendong ; Zhang, Fan ; Chen, Wei ; Jiang, Yongquan ; Song, Dongli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-6913cfbf42eda20a34a06bd8f04b8e3bf51af61afdc4a7d8c9d1967a3f6fe5083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>deep fault diagnosis system</topic><topic>deep learning</topic><topic>Fault diagnosis</topic><topic>fault state recognition</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Roller bearings</topic><topic>rolling bearing</topic><topic>Rolling bearings</topic><topic>Signal classification</topic><topic>Spectrograms</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wendong</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Jiang, Yongquan</creatorcontrib><creatorcontrib>Song, Dongli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computing in science & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Wendong</au><au>Zhang, Fan</au><au>Chen, Wei</au><au>Jiang, Yongquan</au><au>Song, Dongli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault State Recognition of Rolling Bearing Based Fully Convolutional Network</atitle><jtitle>Computing in science & engineering</jtitle><stitle>CISE-M</stitle><date>2019-09</date><risdate>2019</risdate><volume>21</volume><issue>5</issue><spage>55</spage><epage>63</epage><pages>55-63</pages><issn>1521-9615</issn><eissn>1558-366X</eissn><coden>CSENFA</coden><abstract>To solve the problem of determining the fault damage of rolling bearings, a fault diagnosis method for intelligent classification of vibration signals with different fault locations and different damage degrees is proposed. First, the research object is the laboratory dataset. By transforming into spectrograms, this can preserve the original information of the time-domain signal to a greater extent. Then, we use a deep, fully convolutional neural network to train the dataset. It has a rapid convergence and the accuracy is up to 100%. Second, in order to verify the correctness of the model, we take the service data on the real line as the research object, and the accuracy rate is as high as 99.22%. Compared with some other machine learning algorithms, our method boasts better generalization capability and accuracy and could be applied to practical engineering.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MCSE.2018.110113254</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1521-9615 |
ispartof | Computing in science & engineering, 2019-09, Vol.21 (5), p.55-63 |
issn | 1521-9615 1558-366X |
language | eng |
recordid | cdi_crossref_primary_10_1109_MCSE_2018_110113254 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithms Artificial neural networks Convolutional neural networks Datasets deep fault diagnosis system deep learning Fault diagnosis fault state recognition Feature extraction Machine learning Object recognition Roller bearings rolling bearing Rolling bearings Signal classification Spectrograms Time-frequency analysis |
title | Fault State Recognition of Rolling Bearing Based Fully Convolutional Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20State%20Recognition%20of%20Rolling%20Bearing%20Based%20Fully%20Convolutional%20Network&rft.jtitle=Computing%20in%20science%20&%20engineering&rft.au=Zhang,%20Wendong&rft.date=2019-09&rft.volume=21&rft.issue=5&rft.spage=55&rft.epage=63&rft.pages=55-63&rft.issn=1521-9615&rft.eissn=1558-366X&rft.coden=CSENFA&rft_id=info:doi/10.1109/MCSE.2018.110113254&rft_dat=%3Cproquest_RIE%3E2275582075%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275582075&rft_id=info:pmid/&rft_ieee_id=8254321&rfr_iscdi=true |