Automatic Lip-Contour Extraction and Mouth-Structure Segmentation in Images
Lip-contour extraction has great potential for human-machine interface and communication systems, but most existing techniques are inappropriate for changing poses, malformations, or whole-mouth descriptions. A new mouth-structure segmentation methodology uses pixel color classification, segmentatio...
Gespeichert in:
Veröffentlicht in: | Computing in science & engineering 2011-05, Vol.13 (3), p.22-30 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | 3 |
container_start_page | 22 |
container_title | Computing in science & engineering |
container_volume | 13 |
creator | Gomez-Mendoza, Juan-Bernardo Prieto, flavio redarce, herve |
description | Lip-contour extraction has great potential for human-machine interface and communication systems, but most existing techniques are inappropriate for changing poses, malformations, or whole-mouth descriptions. A new mouth-structure segmentation methodology uses pixel color classification, segmentation refinement, and fitted region-of-interest clipping to improve the speed and accuracy of mouth-structure segmentation using standard database images. |
doi_str_mv | 10.1109/MCSE.2010.145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MCSE_2010_145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5654628</ieee_id><sourcerecordid>875033216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-41e5c7d6c843617a6e076b185ba9154c970d139adb458fcee1084b580899b7653</originalsourceid><addsrcrecordid>eNpd0UFPwyAUB3BiNHFOj568NF6Mh05ogdLjsky32MXDNPFGKGUbS1smUKPfXmrNDp6Al18eee8PwDWCE4Rg_rCareeTBPZPTE7ACBHC4pTS99P-nqA4p4icgwvn9hBCzHIyAs_TzptGeC2jQh_imWm96Ww0__JWSK9NG4m2ilam87t47W0nfWdVtFbbRrVe_ALdRstGbJW7BGcbUTt19XeOwdvj_HW2iIuXp-VsWsQSI-pjjBSRWUUlwylFmaAKZrREjJQiRwTLPIMVSnNRlZiwjVQKQYZLwiDL8zKjJB2D-6HvTtT8YHUj7Dc3QvPFtOB9LawgC_MmnyjYu8EerPnolPO80U6quhatMp3jLCMwTRNEg7z9J_dhE20YhDOakiQoFlA8IGmNc1Ztjv8jyPsQeB8C70PgIYTgbwavlVJHSyjBNHT7AbSKgGI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863523328</pqid></control><display><type>article</type><title>Automatic Lip-Contour Extraction and Mouth-Structure Segmentation in Images</title><source>IEEE Electronic Library (IEL)</source><creator>Gomez-Mendoza, Juan-Bernardo ; Prieto, flavio ; redarce, herve</creator><creatorcontrib>Gomez-Mendoza, Juan-Bernardo ; Prieto, flavio ; redarce, herve</creatorcontrib><description>Lip-contour extraction has great potential for human-machine interface and communication systems, but most existing techniques are inappropriate for changing poses, malformations, or whole-mouth descriptions. A new mouth-structure segmentation methodology uses pixel color classification, segmentation refinement, and fitted region-of-interest clipping to improve the speed and accuracy of mouth-structure segmentation using standard database images.</description><identifier>ISSN: 1521-9615</identifier><identifier>EISSN: 1558-366X</identifier><identifier>DOI: 10.1109/MCSE.2010.145</identifier><identifier>CODEN: CSENFA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification ; Color ; Descriptions ; Electric power ; Engineering Sciences ; Extraction ; Feature extraction ; Image color analysis ; Image segmentation ; Lip segmentation ; lip-contour extraction ; Lips ; mouth segmentation ; scientific computing ; Segmentation</subject><ispartof>Computing in science & engineering, 2011-05, Vol.13 (3), p.22-30</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May/Jun 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-41e5c7d6c843617a6e076b185ba9154c970d139adb458fcee1084b580899b7653</citedby><cites>FETCH-LOGICAL-c416t-41e5c7d6c843617a6e076b185ba9154c970d139adb458fcee1084b580899b7653</cites><orcidid>0000-0002-0540-7251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5654628$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5654628$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01075212$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez-Mendoza, Juan-Bernardo</creatorcontrib><creatorcontrib>Prieto, flavio</creatorcontrib><creatorcontrib>redarce, herve</creatorcontrib><title>Automatic Lip-Contour Extraction and Mouth-Structure Segmentation in Images</title><title>Computing in science & engineering</title><addtitle>CISE-M</addtitle><description>Lip-contour extraction has great potential for human-machine interface and communication systems, but most existing techniques are inappropriate for changing poses, malformations, or whole-mouth descriptions. A new mouth-structure segmentation methodology uses pixel color classification, segmentation refinement, and fitted region-of-interest clipping to improve the speed and accuracy of mouth-structure segmentation using standard database images.</description><subject>Classification</subject><subject>Color</subject><subject>Descriptions</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>Extraction</subject><subject>Feature extraction</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Lip segmentation</subject><subject>lip-contour extraction</subject><subject>Lips</subject><subject>mouth segmentation</subject><subject>scientific computing</subject><subject>Segmentation</subject><issn>1521-9615</issn><issn>1558-366X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0UFPwyAUB3BiNHFOj568NF6Mh05ogdLjsky32MXDNPFGKGUbS1smUKPfXmrNDp6Al18eee8PwDWCE4Rg_rCareeTBPZPTE7ACBHC4pTS99P-nqA4p4icgwvn9hBCzHIyAs_TzptGeC2jQh_imWm96Ww0__JWSK9NG4m2ilam87t47W0nfWdVtFbbRrVe_ALdRstGbJW7BGcbUTt19XeOwdvj_HW2iIuXp-VsWsQSI-pjjBSRWUUlwylFmaAKZrREjJQiRwTLPIMVSnNRlZiwjVQKQYZLwiDL8zKjJB2D-6HvTtT8YHUj7Dc3QvPFtOB9LawgC_MmnyjYu8EerPnolPO80U6quhatMp3jLCMwTRNEg7z9J_dhE20YhDOakiQoFlA8IGmNc1Ztjv8jyPsQeB8C70PgIYTgbwavlVJHSyjBNHT7AbSKgGI</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Gomez-Mendoza, Juan-Bernardo</creator><creator>Prieto, flavio</creator><creator>redarce, herve</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0540-7251</orcidid></search><sort><creationdate>201105</creationdate><title>Automatic Lip-Contour Extraction and Mouth-Structure Segmentation in Images</title><author>Gomez-Mendoza, Juan-Bernardo ; Prieto, flavio ; redarce, herve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-41e5c7d6c843617a6e076b185ba9154c970d139adb458fcee1084b580899b7653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classification</topic><topic>Color</topic><topic>Descriptions</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>Extraction</topic><topic>Feature extraction</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Lip segmentation</topic><topic>lip-contour extraction</topic><topic>Lips</topic><topic>mouth segmentation</topic><topic>scientific computing</topic><topic>Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Mendoza, Juan-Bernardo</creatorcontrib><creatorcontrib>Prieto, flavio</creatorcontrib><creatorcontrib>redarce, herve</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computing in science & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gomez-Mendoza, Juan-Bernardo</au><au>Prieto, flavio</au><au>redarce, herve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Lip-Contour Extraction and Mouth-Structure Segmentation in Images</atitle><jtitle>Computing in science & engineering</jtitle><stitle>CISE-M</stitle><date>2011-05</date><risdate>2011</risdate><volume>13</volume><issue>3</issue><spage>22</spage><epage>30</epage><pages>22-30</pages><issn>1521-9615</issn><eissn>1558-366X</eissn><coden>CSENFA</coden><abstract>Lip-contour extraction has great potential for human-machine interface and communication systems, but most existing techniques are inappropriate for changing poses, malformations, or whole-mouth descriptions. A new mouth-structure segmentation methodology uses pixel color classification, segmentation refinement, and fitted region-of-interest clipping to improve the speed and accuracy of mouth-structure segmentation using standard database images.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MCSE.2010.145</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0540-7251</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1521-9615 |
ispartof | Computing in science & engineering, 2011-05, Vol.13 (3), p.22-30 |
issn | 1521-9615 1558-366X |
language | eng |
recordid | cdi_crossref_primary_10_1109_MCSE_2010_145 |
source | IEEE Electronic Library (IEL) |
subjects | Classification Color Descriptions Electric power Engineering Sciences Extraction Feature extraction Image color analysis Image segmentation Lip segmentation lip-contour extraction Lips mouth segmentation scientific computing Segmentation |
title | Automatic Lip-Contour Extraction and Mouth-Structure Segmentation in Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Lip-Contour%20Extraction%20and%20Mouth-Structure%20Segmentation%20in%20Images&rft.jtitle=Computing%20in%20science%20&%20engineering&rft.au=Gomez-Mendoza,%20Juan-Bernardo&rft.date=2011-05&rft.volume=13&rft.issue=3&rft.spage=22&rft.epage=30&rft.pages=22-30&rft.issn=1521-9615&rft.eissn=1558-366X&rft.coden=CSENFA&rft_id=info:doi/10.1109/MCSE.2010.145&rft_dat=%3Cproquest_RIE%3E875033216%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863523328&rft_id=info:pmid/&rft_ieee_id=5654628&rfr_iscdi=true |