Root Cause Analysis of Network Failures Using Machine Learning and Summarization Techniques
Root cause analysis includes the methods to identify the sources of errors in a network. Most techniques rely on knowledge models of the system, which are usually built by using network operators' expertise. This presents problems related to knowledge extraction, scalability, and understandabil...
Gespeichert in:
Veröffentlicht in: | IEEE communications magazine 2017-09, Vol.55 (9), p.126-131 |
---|---|
Hauptverfasser: | , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 9 |
container_start_page | 126 |
container_title | IEEE communications magazine |
container_volume | 55 |
creator | Gonzalez, Jose Manuel Navarro Jimenez, Javier Andion Lopez, Juan Carlos Duenas Parada G, Hugo A. |
description | Root cause analysis includes the methods to identify the sources of errors in a network. Most techniques rely on knowledge models of the system, which are usually built by using network operators' expertise. This presents problems related to knowledge extraction, scalability, and understandability. We propose an offline method based on machine learning techniques for the automatic identification of dependencies between system events, enhanced with summarization, operations on graphs, and visualization that help network operators identify the root causes of errors. We illustrate it with examples from a corporate network. |
doi_str_mv | 10.1109/MCOM.2017.1700066 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MCOM_2017_1700066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8030498</ieee_id><sourcerecordid>1938671808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-1c32e35bd3683b11c1ba1d6b4f52bf01b9c4da7771434a45b031716ac5b5ddfd3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zs6RJejmKU2FzoNuVFyVJU5e5NTNpkfnrbdnw6sDhec_Hg9AtkBEAyR7m-WI-GhMQIxCEEM7P0ADSVCYgM36OBgQ4Tbgk7BJdxbjpECGkHKCPN-8bnKs2Wjyp1fYQXcS-wq-2-fHhC0-V27bBRryKrv7Ec2XWrrZ4ZlWo-4aqS_ze7nYquF_VOF_jpTXr2n23Nl6ji0pto7051SFaTR-X-XMyWzy95JNZYhgRTQKGji1NdUm5pBrAgFZQcs2qdKwrAjozrFRCCGCUKZZqQkEAVybVaVlWJR2i--PcffD93qbY-DZ0z8QCMiq5AElkR8GRMsHHGGxV7IPr7j4UQIreYdE7LHqHxclhl7k7Zpy19p-XhBKWSfoHlVdtrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>1938671808</pqid></control><display><type>magazinearticle</type><title>Root Cause Analysis of Network Failures Using Machine Learning and Summarization Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Gonzalez, Jose Manuel Navarro ; Jimenez, Javier Andion ; Lopez, Juan Carlos Duenas ; Parada G, Hugo A.</creator><creatorcontrib>Gonzalez, Jose Manuel Navarro ; Jimenez, Javier Andion ; Lopez, Juan Carlos Duenas ; Parada G, Hugo A.</creatorcontrib><description>Root cause analysis includes the methods to identify the sources of errors in a network. Most techniques rely on knowledge models of the system, which are usually built by using network operators' expertise. This presents problems related to knowledge extraction, scalability, and understandability. We propose an offline method based on machine learning techniques for the automatic identification of dependencies between system events, enhanced with summarization, operations on graphs, and visualization that help network operators identify the root causes of errors. We illustrate it with examples from a corporate network.</description><identifier>ISSN: 0163-6804</identifier><identifier>EISSN: 1558-1896</identifier><identifier>DOI: 10.1109/MCOM.2017.1700066</identifier><identifier>CODEN: ICOMD9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Data mining ; Failure analysis ; Identification methods ; Knowledge based systems ; Knowledge engineering ; Machine learning ; Machine learning algorithms ; Operators ; Predictive models ; Root cause analysis</subject><ispartof>IEEE communications magazine, 2017-09, Vol.55 (9), p.126-131</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-1c32e35bd3683b11c1ba1d6b4f52bf01b9c4da7771434a45b031716ac5b5ddfd3</citedby><cites>FETCH-LOGICAL-c407t-1c32e35bd3683b11c1ba1d6b4f52bf01b9c4da7771434a45b031716ac5b5ddfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8030498$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>777,781,793,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8030498$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gonzalez, Jose Manuel Navarro</creatorcontrib><creatorcontrib>Jimenez, Javier Andion</creatorcontrib><creatorcontrib>Lopez, Juan Carlos Duenas</creatorcontrib><creatorcontrib>Parada G, Hugo A.</creatorcontrib><title>Root Cause Analysis of Network Failures Using Machine Learning and Summarization Techniques</title><title>IEEE communications magazine</title><addtitle>COM-M</addtitle><description>Root cause analysis includes the methods to identify the sources of errors in a network. Most techniques rely on knowledge models of the system, which are usually built by using network operators' expertise. This presents problems related to knowledge extraction, scalability, and understandability. We propose an offline method based on machine learning techniques for the automatic identification of dependencies between system events, enhanced with summarization, operations on graphs, and visualization that help network operators identify the root causes of errors. We illustrate it with examples from a corporate network.</description><subject>Artificial intelligence</subject><subject>Data mining</subject><subject>Failure analysis</subject><subject>Identification methods</subject><subject>Knowledge based systems</subject><subject>Knowledge engineering</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Operators</subject><subject>Predictive models</subject><subject>Root cause analysis</subject><issn>0163-6804</issn><issn>1558-1896</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2017</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zs6RJejmKU2FzoNuVFyVJU5e5NTNpkfnrbdnw6sDhec_Hg9AtkBEAyR7m-WI-GhMQIxCEEM7P0ADSVCYgM36OBgQ4Tbgk7BJdxbjpECGkHKCPN-8bnKs2Wjyp1fYQXcS-wq-2-fHhC0-V27bBRryKrv7Ec2XWrrZ4ZlWo-4aqS_ze7nYquF_VOF_jpTXr2n23Nl6ji0pto7051SFaTR-X-XMyWzy95JNZYhgRTQKGji1NdUm5pBrAgFZQcs2qdKwrAjozrFRCCGCUKZZqQkEAVybVaVlWJR2i--PcffD93qbY-DZ0z8QCMiq5AElkR8GRMsHHGGxV7IPr7j4UQIreYdE7LHqHxclhl7k7Zpy19p-XhBKWSfoHlVdtrA</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Gonzalez, Jose Manuel Navarro</creator><creator>Jimenez, Javier Andion</creator><creator>Lopez, Juan Carlos Duenas</creator><creator>Parada G, Hugo A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20170901</creationdate><title>Root Cause Analysis of Network Failures Using Machine Learning and Summarization Techniques</title><author>Gonzalez, Jose Manuel Navarro ; Jimenez, Javier Andion ; Lopez, Juan Carlos Duenas ; Parada G, Hugo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-1c32e35bd3683b11c1ba1d6b4f52bf01b9c4da7771434a45b031716ac5b5ddfd3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Data mining</topic><topic>Failure analysis</topic><topic>Identification methods</topic><topic>Knowledge based systems</topic><topic>Knowledge engineering</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Operators</topic><topic>Predictive models</topic><topic>Root cause analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez, Jose Manuel Navarro</creatorcontrib><creatorcontrib>Jimenez, Javier Andion</creatorcontrib><creatorcontrib>Lopez, Juan Carlos Duenas</creatorcontrib><creatorcontrib>Parada G, Hugo A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gonzalez, Jose Manuel Navarro</au><au>Jimenez, Javier Andion</au><au>Lopez, Juan Carlos Duenas</au><au>Parada G, Hugo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Root Cause Analysis of Network Failures Using Machine Learning and Summarization Techniques</atitle><jtitle>IEEE communications magazine</jtitle><stitle>COM-M</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>55</volume><issue>9</issue><spage>126</spage><epage>131</epage><pages>126-131</pages><issn>0163-6804</issn><eissn>1558-1896</eissn><coden>ICOMD9</coden><abstract>Root cause analysis includes the methods to identify the sources of errors in a network. Most techniques rely on knowledge models of the system, which are usually built by using network operators' expertise. This presents problems related to knowledge extraction, scalability, and understandability. We propose an offline method based on machine learning techniques for the automatic identification of dependencies between system events, enhanced with summarization, operations on graphs, and visualization that help network operators identify the root causes of errors. We illustrate it with examples from a corporate network.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MCOM.2017.1700066</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0163-6804 |
ispartof | IEEE communications magazine, 2017-09, Vol.55 (9), p.126-131 |
issn | 0163-6804 1558-1896 |
language | eng |
recordid | cdi_crossref_primary_10_1109_MCOM_2017_1700066 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Data mining Failure analysis Identification methods Knowledge based systems Knowledge engineering Machine learning Machine learning algorithms Operators Predictive models Root cause analysis |
title | Root Cause Analysis of Network Failures Using Machine Learning and Summarization Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Root%20Cause%20Analysis%20of%20Network%20Failures%20Using%20Machine%20Learning%20and%20Summarization%20Techniques&rft.jtitle=IEEE%20communications%20magazine&rft.au=Gonzalez,%20Jose%20Manuel%20Navarro&rft.date=2017-09-01&rft.volume=55&rft.issue=9&rft.spage=126&rft.epage=131&rft.pages=126-131&rft.issn=0163-6804&rft.eissn=1558-1896&rft.coden=ICOMD9&rft_id=info:doi/10.1109/MCOM.2017.1700066&rft_dat=%3Cproquest_RIE%3E1938671808%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938671808&rft_id=info:pmid/&rft_ieee_id=8030498&rfr_iscdi=true |