Root Cause Analysis of Network Failures Using Machine Learning and Summarization Techniques

Root cause analysis includes the methods to identify the sources of errors in a network. Most techniques rely on knowledge models of the system, which are usually built by using network operators' expertise. This presents problems related to knowledge extraction, scalability, and understandabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications magazine 2017-09, Vol.55 (9), p.126-131
Hauptverfasser: Gonzalez, Jose Manuel Navarro, Jimenez, Javier Andion, Lopez, Juan Carlos Duenas, Parada G, Hugo A.
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 9
container_start_page 126
container_title IEEE communications magazine
container_volume 55
creator Gonzalez, Jose Manuel Navarro
Jimenez, Javier Andion
Lopez, Juan Carlos Duenas
Parada G, Hugo A.
description Root cause analysis includes the methods to identify the sources of errors in a network. Most techniques rely on knowledge models of the system, which are usually built by using network operators' expertise. This presents problems related to knowledge extraction, scalability, and understandability. We propose an offline method based on machine learning techniques for the automatic identification of dependencies between system events, enhanced with summarization, operations on graphs, and visualization that help network operators identify the root causes of errors. We illustrate it with examples from a corporate network.
doi_str_mv 10.1109/MCOM.2017.1700066
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MCOM_2017_1700066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8030498</ieee_id><sourcerecordid>1938671808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-1c32e35bd3683b11c1ba1d6b4f52bf01b9c4da7771434a45b031716ac5b5ddfd3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zs6RJejmKU2FzoNuVFyVJU5e5NTNpkfnrbdnw6sDhec_Hg9AtkBEAyR7m-WI-GhMQIxCEEM7P0ADSVCYgM36OBgQ4Tbgk7BJdxbjpECGkHKCPN-8bnKs2Wjyp1fYQXcS-wq-2-fHhC0-V27bBRryKrv7Ec2XWrrZ4ZlWo-4aqS_ze7nYquF_VOF_jpTXr2n23Nl6ji0pto7051SFaTR-X-XMyWzy95JNZYhgRTQKGji1NdUm5pBrAgFZQcs2qdKwrAjozrFRCCGCUKZZqQkEAVybVaVlWJR2i--PcffD93qbY-DZ0z8QCMiq5AElkR8GRMsHHGGxV7IPr7j4UQIreYdE7LHqHxclhl7k7Zpy19p-XhBKWSfoHlVdtrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>1938671808</pqid></control><display><type>magazinearticle</type><title>Root Cause Analysis of Network Failures Using Machine Learning and Summarization Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Gonzalez, Jose Manuel Navarro ; Jimenez, Javier Andion ; Lopez, Juan Carlos Duenas ; Parada G, Hugo A.</creator><creatorcontrib>Gonzalez, Jose Manuel Navarro ; Jimenez, Javier Andion ; Lopez, Juan Carlos Duenas ; Parada G, Hugo A.</creatorcontrib><description>Root cause analysis includes the methods to identify the sources of errors in a network. Most techniques rely on knowledge models of the system, which are usually built by using network operators' expertise. This presents problems related to knowledge extraction, scalability, and understandability. We propose an offline method based on machine learning techniques for the automatic identification of dependencies between system events, enhanced with summarization, operations on graphs, and visualization that help network operators identify the root causes of errors. We illustrate it with examples from a corporate network.</description><identifier>ISSN: 0163-6804</identifier><identifier>EISSN: 1558-1896</identifier><identifier>DOI: 10.1109/MCOM.2017.1700066</identifier><identifier>CODEN: ICOMD9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Data mining ; Failure analysis ; Identification methods ; Knowledge based systems ; Knowledge engineering ; Machine learning ; Machine learning algorithms ; Operators ; Predictive models ; Root cause analysis</subject><ispartof>IEEE communications magazine, 2017-09, Vol.55 (9), p.126-131</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-1c32e35bd3683b11c1ba1d6b4f52bf01b9c4da7771434a45b031716ac5b5ddfd3</citedby><cites>FETCH-LOGICAL-c407t-1c32e35bd3683b11c1ba1d6b4f52bf01b9c4da7771434a45b031716ac5b5ddfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8030498$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>777,781,793,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8030498$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gonzalez, Jose Manuel Navarro</creatorcontrib><creatorcontrib>Jimenez, Javier Andion</creatorcontrib><creatorcontrib>Lopez, Juan Carlos Duenas</creatorcontrib><creatorcontrib>Parada G, Hugo A.</creatorcontrib><title>Root Cause Analysis of Network Failures Using Machine Learning and Summarization Techniques</title><title>IEEE communications magazine</title><addtitle>COM-M</addtitle><description>Root cause analysis includes the methods to identify the sources of errors in a network. Most techniques rely on knowledge models of the system, which are usually built by using network operators' expertise. This presents problems related to knowledge extraction, scalability, and understandability. We propose an offline method based on machine learning techniques for the automatic identification of dependencies between system events, enhanced with summarization, operations on graphs, and visualization that help network operators identify the root causes of errors. We illustrate it with examples from a corporate network.</description><subject>Artificial intelligence</subject><subject>Data mining</subject><subject>Failure analysis</subject><subject>Identification methods</subject><subject>Knowledge based systems</subject><subject>Knowledge engineering</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Operators</subject><subject>Predictive models</subject><subject>Root cause analysis</subject><issn>0163-6804</issn><issn>1558-1896</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2017</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zs6RJejmKU2FzoNuVFyVJU5e5NTNpkfnrbdnw6sDhec_Hg9AtkBEAyR7m-WI-GhMQIxCEEM7P0ADSVCYgM36OBgQ4Tbgk7BJdxbjpECGkHKCPN-8bnKs2Wjyp1fYQXcS-wq-2-fHhC0-V27bBRryKrv7Ec2XWrrZ4ZlWo-4aqS_ze7nYquF_VOF_jpTXr2n23Nl6ji0pto7051SFaTR-X-XMyWzy95JNZYhgRTQKGji1NdUm5pBrAgFZQcs2qdKwrAjozrFRCCGCUKZZqQkEAVybVaVlWJR2i--PcffD93qbY-DZ0z8QCMiq5AElkR8GRMsHHGGxV7IPr7j4UQIreYdE7LHqHxclhl7k7Zpy19p-XhBKWSfoHlVdtrA</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Gonzalez, Jose Manuel Navarro</creator><creator>Jimenez, Javier Andion</creator><creator>Lopez, Juan Carlos Duenas</creator><creator>Parada G, Hugo A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20170901</creationdate><title>Root Cause Analysis of Network Failures Using Machine Learning and Summarization Techniques</title><author>Gonzalez, Jose Manuel Navarro ; Jimenez, Javier Andion ; Lopez, Juan Carlos Duenas ; Parada G, Hugo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-1c32e35bd3683b11c1ba1d6b4f52bf01b9c4da7771434a45b031716ac5b5ddfd3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Data mining</topic><topic>Failure analysis</topic><topic>Identification methods</topic><topic>Knowledge based systems</topic><topic>Knowledge engineering</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Operators</topic><topic>Predictive models</topic><topic>Root cause analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez, Jose Manuel Navarro</creatorcontrib><creatorcontrib>Jimenez, Javier Andion</creatorcontrib><creatorcontrib>Lopez, Juan Carlos Duenas</creatorcontrib><creatorcontrib>Parada G, Hugo A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gonzalez, Jose Manuel Navarro</au><au>Jimenez, Javier Andion</au><au>Lopez, Juan Carlos Duenas</au><au>Parada G, Hugo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Root Cause Analysis of Network Failures Using Machine Learning and Summarization Techniques</atitle><jtitle>IEEE communications magazine</jtitle><stitle>COM-M</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>55</volume><issue>9</issue><spage>126</spage><epage>131</epage><pages>126-131</pages><issn>0163-6804</issn><eissn>1558-1896</eissn><coden>ICOMD9</coden><abstract>Root cause analysis includes the methods to identify the sources of errors in a network. Most techniques rely on knowledge models of the system, which are usually built by using network operators' expertise. This presents problems related to knowledge extraction, scalability, and understandability. We propose an offline method based on machine learning techniques for the automatic identification of dependencies between system events, enhanced with summarization, operations on graphs, and visualization that help network operators identify the root causes of errors. We illustrate it with examples from a corporate network.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MCOM.2017.1700066</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0163-6804
ispartof IEEE communications magazine, 2017-09, Vol.55 (9), p.126-131
issn 0163-6804
1558-1896
language eng
recordid cdi_crossref_primary_10_1109_MCOM_2017_1700066
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Data mining
Failure analysis
Identification methods
Knowledge based systems
Knowledge engineering
Machine learning
Machine learning algorithms
Operators
Predictive models
Root cause analysis
title Root Cause Analysis of Network Failures Using Machine Learning and Summarization Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Root%20Cause%20Analysis%20of%20Network%20Failures%20Using%20Machine%20Learning%20and%20Summarization%20Techniques&rft.jtitle=IEEE%20communications%20magazine&rft.au=Gonzalez,%20Jose%20Manuel%20Navarro&rft.date=2017-09-01&rft.volume=55&rft.issue=9&rft.spage=126&rft.epage=131&rft.pages=126-131&rft.issn=0163-6804&rft.eissn=1558-1896&rft.coden=ICOMD9&rft_id=info:doi/10.1109/MCOM.2017.1700066&rft_dat=%3Cproquest_RIE%3E1938671808%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938671808&rft_id=info:pmid/&rft_ieee_id=8030498&rfr_iscdi=true