Green Time-Critical Fog Communication and Computing
Fog computing allows computationally-heavy problems with tight time constraints to be solved even if end devices have limited computational resources and latency induced by cloud computing is too high. How can energy consumed by fog computing be saved while obeying latency constraints and considerin...
Gespeichert in:
Veröffentlicht in: | IEEE communications magazine 2023-12, Vol.61 (12), p.1-7 |
---|---|
Hauptverfasser: | , , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | IEEE communications magazine |
container_volume | 61 |
creator | Bogucka, Hanna Kopras, Bartosz Idzikowski, Filip Bossy, Bartosz Kryszkiewicz, Pawel |
description | Fog computing allows computationally-heavy problems with tight time constraints to be solved even if end devices have limited computational resources and latency induced by cloud computing is too high. How can energy consumed by fog computing be saved while obeying latency constraints and considering not only computations but also transmission through wireless and wired links? This work examines the latency and energy consumption sources in fog networks and discusses models describing these costs for various technologies. Next, resource allocation strategies are discussed considering the various degrees of freedom available in such a complex system, and their influence on energy consumption and latency. Finally, a vision for a future distributed, AIdriven resources allocation strategy is presented and justified. |
doi_str_mv | 10.1109/MCOM.004.2200921 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MCOM_004_2200921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10122483</ieee_id><sourcerecordid>2907536364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-f08866aaa8ef273c2996e84f70e9c1208a6d16e22d6a92429de91dc91715db923</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvHjwEPKfOzCb7cZSgVWjppZ6XNZmULU1SN8nBf29Ke_A0vMPzzsAjxCPCAhHsy7rYrBcA2YIIwBJeiRnmuUnRWHUtZoBKpspAdivu-n4PAFobMxNyGZnbZBsaTosYhlD6Q_Le7ZKia5qxneIQujbxbXXaHMchtLt7cVP7Q88PlzkXX-9v2-IjXW2Wn8XrKi3J6CGtwRilvPeGa9KyJGsVm6zWwLZEAuNVhYqJKuUtZWQrtliVFjXm1bclORfP57vH2P2M3A9u342xnV46sqBzqaTKJgrOVBm7vo9cu2MMjY-_DsGd1LiTGjepcRc1U-XpXAnM_A9HosxI-Qex_F2t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2907536364</pqid></control><display><type>magazinearticle</type><title>Green Time-Critical Fog Communication and Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Bogucka, Hanna ; Kopras, Bartosz ; Idzikowski, Filip ; Bossy, Bartosz ; Kryszkiewicz, Pawel</creator><creatorcontrib>Bogucka, Hanna ; Kopras, Bartosz ; Idzikowski, Filip ; Bossy, Bartosz ; Kryszkiewicz, Pawel</creatorcontrib><description>Fog computing allows computationally-heavy problems with tight time constraints to be solved even if end devices have limited computational resources and latency induced by cloud computing is too high. How can energy consumed by fog computing be saved while obeying latency constraints and considering not only computations but also transmission through wireless and wired links? This work examines the latency and energy consumption sources in fog networks and discusses models describing these costs for various technologies. Next, resource allocation strategies are discussed considering the various degrees of freedom available in such a complex system, and their influence on energy consumption and latency. Finally, a vision for a future distributed, AIdriven resources allocation strategy is presented and justified.</description><identifier>ISSN: 0163-6804</identifier><identifier>EISSN: 1558-1896</identifier><identifier>DOI: 10.1109/MCOM.004.2200921</identifier><identifier>CODEN: ICOMD9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cloud computing ; Complex systems ; Edge computing ; Energy consumption ; Energy efficiency ; Network latency ; Optimization ; Resource allocation ; Supercomputers ; Task analysis ; Wireless communication</subject><ispartof>IEEE communications magazine, 2023-12, Vol.61 (12), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-f08866aaa8ef273c2996e84f70e9c1208a6d16e22d6a92429de91dc91715db923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10122483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10122483$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bogucka, Hanna</creatorcontrib><creatorcontrib>Kopras, Bartosz</creatorcontrib><creatorcontrib>Idzikowski, Filip</creatorcontrib><creatorcontrib>Bossy, Bartosz</creatorcontrib><creatorcontrib>Kryszkiewicz, Pawel</creatorcontrib><title>Green Time-Critical Fog Communication and Computing</title><title>IEEE communications magazine</title><addtitle>COM-M</addtitle><description>Fog computing allows computationally-heavy problems with tight time constraints to be solved even if end devices have limited computational resources and latency induced by cloud computing is too high. How can energy consumed by fog computing be saved while obeying latency constraints and considering not only computations but also transmission through wireless and wired links? This work examines the latency and energy consumption sources in fog networks and discusses models describing these costs for various technologies. Next, resource allocation strategies are discussed considering the various degrees of freedom available in such a complex system, and their influence on energy consumption and latency. Finally, a vision for a future distributed, AIdriven resources allocation strategy is presented and justified.</description><subject>Cloud computing</subject><subject>Complex systems</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Network latency</subject><subject>Optimization</subject><subject>Resource allocation</subject><subject>Supercomputers</subject><subject>Task analysis</subject><subject>Wireless communication</subject><issn>0163-6804</issn><issn>1558-1896</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2023</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFbvHjwEPKfOzCb7cZSgVWjppZ6XNZmULU1SN8nBf29Ke_A0vMPzzsAjxCPCAhHsy7rYrBcA2YIIwBJeiRnmuUnRWHUtZoBKpspAdivu-n4PAFobMxNyGZnbZBsaTosYhlD6Q_Le7ZKia5qxneIQujbxbXXaHMchtLt7cVP7Q88PlzkXX-9v2-IjXW2Wn8XrKi3J6CGtwRilvPeGa9KyJGsVm6zWwLZEAuNVhYqJKuUtZWQrtliVFjXm1bclORfP57vH2P2M3A9u342xnV46sqBzqaTKJgrOVBm7vo9cu2MMjY-_DsGd1LiTGjepcRc1U-XpXAnM_A9HosxI-Qex_F2t</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Bogucka, Hanna</creator><creator>Kopras, Bartosz</creator><creator>Idzikowski, Filip</creator><creator>Bossy, Bartosz</creator><creator>Kryszkiewicz, Pawel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20231201</creationdate><title>Green Time-Critical Fog Communication and Computing</title><author>Bogucka, Hanna ; Kopras, Bartosz ; Idzikowski, Filip ; Bossy, Bartosz ; Kryszkiewicz, Pawel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-f08866aaa8ef273c2996e84f70e9c1208a6d16e22d6a92429de91dc91715db923</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cloud computing</topic><topic>Complex systems</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Network latency</topic><topic>Optimization</topic><topic>Resource allocation</topic><topic>Supercomputers</topic><topic>Task analysis</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Bogucka, Hanna</creatorcontrib><creatorcontrib>Kopras, Bartosz</creatorcontrib><creatorcontrib>Idzikowski, Filip</creatorcontrib><creatorcontrib>Bossy, Bartosz</creatorcontrib><creatorcontrib>Kryszkiewicz, Pawel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bogucka, Hanna</au><au>Kopras, Bartosz</au><au>Idzikowski, Filip</au><au>Bossy, Bartosz</au><au>Kryszkiewicz, Pawel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green Time-Critical Fog Communication and Computing</atitle><jtitle>IEEE communications magazine</jtitle><stitle>COM-M</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>61</volume><issue>12</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0163-6804</issn><eissn>1558-1896</eissn><coden>ICOMD9</coden><abstract>Fog computing allows computationally-heavy problems with tight time constraints to be solved even if end devices have limited computational resources and latency induced by cloud computing is too high. How can energy consumed by fog computing be saved while obeying latency constraints and considering not only computations but also transmission through wireless and wired links? This work examines the latency and energy consumption sources in fog networks and discusses models describing these costs for various technologies. Next, resource allocation strategies are discussed considering the various degrees of freedom available in such a complex system, and their influence on energy consumption and latency. Finally, a vision for a future distributed, AIdriven resources allocation strategy is presented and justified.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MCOM.004.2200921</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0163-6804 |
ispartof | IEEE communications magazine, 2023-12, Vol.61 (12), p.1-7 |
issn | 0163-6804 1558-1896 |
language | eng |
recordid | cdi_crossref_primary_10_1109_MCOM_004_2200921 |
source | IEEE Electronic Library (IEL) |
subjects | Cloud computing Complex systems Edge computing Energy consumption Energy efficiency Network latency Optimization Resource allocation Supercomputers Task analysis Wireless communication |
title | Green Time-Critical Fog Communication and Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20Time-Critical%20Fog%20Communication%20and%20Computing&rft.jtitle=IEEE%20communications%20magazine&rft.au=Bogucka,%20Hanna&rft.date=2023-12-01&rft.volume=61&rft.issue=12&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0163-6804&rft.eissn=1558-1896&rft.coden=ICOMD9&rft_id=info:doi/10.1109/MCOM.004.2200921&rft_dat=%3Cproquest_RIE%3E2907536364%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2907536364&rft_id=info:pmid/&rft_ieee_id=10122483&rfr_iscdi=true |