Green Time-Critical Fog Communication and Computing

Fog computing allows computationally-heavy problems with tight time constraints to be solved even if end devices have limited computational resources and latency induced by cloud computing is too high. How can energy consumed by fog computing be saved while obeying latency constraints and considerin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications magazine 2023-12, Vol.61 (12), p.1-7
Hauptverfasser: Bogucka, Hanna, Kopras, Bartosz, Idzikowski, Filip, Bossy, Bartosz, Kryszkiewicz, Pawel
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 12
container_start_page 1
container_title IEEE communications magazine
container_volume 61
creator Bogucka, Hanna
Kopras, Bartosz
Idzikowski, Filip
Bossy, Bartosz
Kryszkiewicz, Pawel
description Fog computing allows computationally-heavy problems with tight time constraints to be solved even if end devices have limited computational resources and latency induced by cloud computing is too high. How can energy consumed by fog computing be saved while obeying latency constraints and considering not only computations but also transmission through wireless and wired links? This work examines the latency and energy consumption sources in fog networks and discusses models describing these costs for various technologies. Next, resource allocation strategies are discussed considering the various degrees of freedom available in such a complex system, and their influence on energy consumption and latency. Finally, a vision for a future distributed, AIdriven resources allocation strategy is presented and justified.
doi_str_mv 10.1109/MCOM.004.2200921
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MCOM_004_2200921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10122483</ieee_id><sourcerecordid>2907536364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-f08866aaa8ef273c2996e84f70e9c1208a6d16e22d6a92429de91dc91715db923</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvHjwEPKfOzCb7cZSgVWjppZ6XNZmULU1SN8nBf29Ke_A0vMPzzsAjxCPCAhHsy7rYrBcA2YIIwBJeiRnmuUnRWHUtZoBKpspAdivu-n4PAFobMxNyGZnbZBsaTosYhlD6Q_Le7ZKia5qxneIQujbxbXXaHMchtLt7cVP7Q88PlzkXX-9v2-IjXW2Wn8XrKi3J6CGtwRilvPeGa9KyJGsVm6zWwLZEAuNVhYqJKuUtZWQrtliVFjXm1bclORfP57vH2P2M3A9u342xnV46sqBzqaTKJgrOVBm7vo9cu2MMjY-_DsGd1LiTGjepcRc1U-XpXAnM_A9HosxI-Qex_F2t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2907536364</pqid></control><display><type>magazinearticle</type><title>Green Time-Critical Fog Communication and Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Bogucka, Hanna ; Kopras, Bartosz ; Idzikowski, Filip ; Bossy, Bartosz ; Kryszkiewicz, Pawel</creator><creatorcontrib>Bogucka, Hanna ; Kopras, Bartosz ; Idzikowski, Filip ; Bossy, Bartosz ; Kryszkiewicz, Pawel</creatorcontrib><description>Fog computing allows computationally-heavy problems with tight time constraints to be solved even if end devices have limited computational resources and latency induced by cloud computing is too high. How can energy consumed by fog computing be saved while obeying latency constraints and considering not only computations but also transmission through wireless and wired links? This work examines the latency and energy consumption sources in fog networks and discusses models describing these costs for various technologies. Next, resource allocation strategies are discussed considering the various degrees of freedom available in such a complex system, and their influence on energy consumption and latency. Finally, a vision for a future distributed, AIdriven resources allocation strategy is presented and justified.</description><identifier>ISSN: 0163-6804</identifier><identifier>EISSN: 1558-1896</identifier><identifier>DOI: 10.1109/MCOM.004.2200921</identifier><identifier>CODEN: ICOMD9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cloud computing ; Complex systems ; Edge computing ; Energy consumption ; Energy efficiency ; Network latency ; Optimization ; Resource allocation ; Supercomputers ; Task analysis ; Wireless communication</subject><ispartof>IEEE communications magazine, 2023-12, Vol.61 (12), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-f08866aaa8ef273c2996e84f70e9c1208a6d16e22d6a92429de91dc91715db923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10122483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10122483$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bogucka, Hanna</creatorcontrib><creatorcontrib>Kopras, Bartosz</creatorcontrib><creatorcontrib>Idzikowski, Filip</creatorcontrib><creatorcontrib>Bossy, Bartosz</creatorcontrib><creatorcontrib>Kryszkiewicz, Pawel</creatorcontrib><title>Green Time-Critical Fog Communication and Computing</title><title>IEEE communications magazine</title><addtitle>COM-M</addtitle><description>Fog computing allows computationally-heavy problems with tight time constraints to be solved even if end devices have limited computational resources and latency induced by cloud computing is too high. How can energy consumed by fog computing be saved while obeying latency constraints and considering not only computations but also transmission through wireless and wired links? This work examines the latency and energy consumption sources in fog networks and discusses models describing these costs for various technologies. Next, resource allocation strategies are discussed considering the various degrees of freedom available in such a complex system, and their influence on energy consumption and latency. Finally, a vision for a future distributed, AIdriven resources allocation strategy is presented and justified.</description><subject>Cloud computing</subject><subject>Complex systems</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Network latency</subject><subject>Optimization</subject><subject>Resource allocation</subject><subject>Supercomputers</subject><subject>Task analysis</subject><subject>Wireless communication</subject><issn>0163-6804</issn><issn>1558-1896</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2023</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFbvHjwEPKfOzCb7cZSgVWjppZ6XNZmULU1SN8nBf29Ke_A0vMPzzsAjxCPCAhHsy7rYrBcA2YIIwBJeiRnmuUnRWHUtZoBKpspAdivu-n4PAFobMxNyGZnbZBsaTosYhlD6Q_Le7ZKia5qxneIQujbxbXXaHMchtLt7cVP7Q88PlzkXX-9v2-IjXW2Wn8XrKi3J6CGtwRilvPeGa9KyJGsVm6zWwLZEAuNVhYqJKuUtZWQrtliVFjXm1bclORfP57vH2P2M3A9u342xnV46sqBzqaTKJgrOVBm7vo9cu2MMjY-_DsGd1LiTGjepcRc1U-XpXAnM_A9HosxI-Qex_F2t</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Bogucka, Hanna</creator><creator>Kopras, Bartosz</creator><creator>Idzikowski, Filip</creator><creator>Bossy, Bartosz</creator><creator>Kryszkiewicz, Pawel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20231201</creationdate><title>Green Time-Critical Fog Communication and Computing</title><author>Bogucka, Hanna ; Kopras, Bartosz ; Idzikowski, Filip ; Bossy, Bartosz ; Kryszkiewicz, Pawel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-f08866aaa8ef273c2996e84f70e9c1208a6d16e22d6a92429de91dc91715db923</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cloud computing</topic><topic>Complex systems</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Network latency</topic><topic>Optimization</topic><topic>Resource allocation</topic><topic>Supercomputers</topic><topic>Task analysis</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Bogucka, Hanna</creatorcontrib><creatorcontrib>Kopras, Bartosz</creatorcontrib><creatorcontrib>Idzikowski, Filip</creatorcontrib><creatorcontrib>Bossy, Bartosz</creatorcontrib><creatorcontrib>Kryszkiewicz, Pawel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bogucka, Hanna</au><au>Kopras, Bartosz</au><au>Idzikowski, Filip</au><au>Bossy, Bartosz</au><au>Kryszkiewicz, Pawel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green Time-Critical Fog Communication and Computing</atitle><jtitle>IEEE communications magazine</jtitle><stitle>COM-M</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>61</volume><issue>12</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0163-6804</issn><eissn>1558-1896</eissn><coden>ICOMD9</coden><abstract>Fog computing allows computationally-heavy problems with tight time constraints to be solved even if end devices have limited computational resources and latency induced by cloud computing is too high. How can energy consumed by fog computing be saved while obeying latency constraints and considering not only computations but also transmission through wireless and wired links? This work examines the latency and energy consumption sources in fog networks and discusses models describing these costs for various technologies. Next, resource allocation strategies are discussed considering the various degrees of freedom available in such a complex system, and their influence on energy consumption and latency. Finally, a vision for a future distributed, AIdriven resources allocation strategy is presented and justified.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MCOM.004.2200921</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0163-6804
ispartof IEEE communications magazine, 2023-12, Vol.61 (12), p.1-7
issn 0163-6804
1558-1896
language eng
recordid cdi_crossref_primary_10_1109_MCOM_004_2200921
source IEEE Electronic Library (IEL)
subjects Cloud computing
Complex systems
Edge computing
Energy consumption
Energy efficiency
Network latency
Optimization
Resource allocation
Supercomputers
Task analysis
Wireless communication
title Green Time-Critical Fog Communication and Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20Time-Critical%20Fog%20Communication%20and%20Computing&rft.jtitle=IEEE%20communications%20magazine&rft.au=Bogucka,%20Hanna&rft.date=2023-12-01&rft.volume=61&rft.issue=12&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0163-6804&rft.eissn=1558-1896&rft.coden=ICOMD9&rft_id=info:doi/10.1109/MCOM.004.2200921&rft_dat=%3Cproquest_RIE%3E2907536364%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2907536364&rft_id=info:pmid/&rft_ieee_id=10122483&rfr_iscdi=true