Communication Through a Large Reflecting Surface With Phase Errors
Assume the communication between a source and a destination is supported by a large reflecting surface (LRS), which consists of an array of reflector elements with adjustable reflection phases. By knowing the phase shifts induced by the composite propagation channels through the LRS, the phases of t...
Gespeichert in:
Veröffentlicht in: | IEEE wireless communications letters 2020-02, Vol.9 (2), p.184-188 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | 2 |
container_start_page | 184 |
container_title | IEEE wireless communications letters |
container_volume | 9 |
creator | Badiu, Mihai-Alin Coon, Justin P. |
description | Assume the communication between a source and a destination is supported by a large reflecting surface (LRS), which consists of an array of reflector elements with adjustable reflection phases. By knowing the phase shifts induced by the composite propagation channels through the LRS, the phases of the reflectors can be configured such that the signals combine coherently at the destination, which improves the communication performance. However, perfect phase estimation or high-precision configuration of the reflection phases is unfeasible. We study the transmission through an LRS with phase errors that have a generic distribution. We show that the LRS-based composite channel is equivalent to a direct channel with Nakagami scalar fading. This equivalent representation allows for theoretical analysis of the performance and can help the system designer study the interplay between performance, the distribution of phase errors, and the number of reflectors. Numerical evaluation of the error probability for a limited number of reflectors confirms the theoretical prediction and shows that the performance is remarkably robust against the phase errors. |
doi_str_mv | 10.1109/LWC.2019.2947445 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LWC_2019_2947445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8869792</ieee_id><sourcerecordid>2354607880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-72b5d60ce9b4ff91c2348fd4a6c562b5da231311e7e97e9e861892944c6226ee3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGrvgpeA56352mxy1KVWYUHRSo8hTSfdLe1uTXYP_ntTWjoMzMC88_UgdE_JlFKin6plOWWE6inTohAiv0IjRiXLGBf59SXnxS2axLglySShjKoReim7_X5oG2f7pmvxog7dsKmxxZUNG8Bf4Hfg-qbd4O8heOsAL5u-xp-1jYBnIXQh3qEbb3cRJuc4Rj-vs0X5llUf8_fyucoc07TPCrbK15I40CvhvaYuHaf8WljpcnmsWcYppxQK0MlBSap0-kc4yZgE4GP0eJp7CN3vALE3224IbVppGM-FJIVSJKnISeVCF2MAbw6h2dvwZygxR1gmwTJHWOYMK7U8nFoaALjIlZK60Iz_A-69Y6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354607880</pqid></control><display><type>article</type><title>Communication Through a Large Reflecting Surface With Phase Errors</title><source>IEEE Electronic Library (IEL)</source><creator>Badiu, Mihai-Alin ; Coon, Justin P.</creator><creatorcontrib>Badiu, Mihai-Alin ; Coon, Justin P.</creatorcontrib><description>Assume the communication between a source and a destination is supported by a large reflecting surface (LRS), which consists of an array of reflector elements with adjustable reflection phases. By knowing the phase shifts induced by the composite propagation channels through the LRS, the phases of the reflectors can be configured such that the signals combine coherently at the destination, which improves the communication performance. However, perfect phase estimation or high-precision configuration of the reflection phases is unfeasible. We study the transmission through an LRS with phase errors that have a generic distribution. We show that the LRS-based composite channel is equivalent to a direct channel with Nakagami scalar fading. This equivalent representation allows for theoretical analysis of the performance and can help the system designer study the interplay between performance, the distribution of phase errors, and the number of reflectors. Numerical evaluation of the error probability for a limited number of reflectors confirms the theoretical prediction and shows that the performance is remarkably robust against the phase errors.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2019.2947445</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Communication ; Equivalence ; error probability ; intelligent reflecting surface ; large system analysis ; meta-surface ; Nakagami distribution ; Nakagami fading ; phase errors ; Phase estimation ; Phased arrays ; Phases ; Rayleigh channels ; Receivers ; Reflect-array ; Reflection ; Reflectors ; Robustness (mathematics) ; Signal to noise ratio</subject><ispartof>IEEE wireless communications letters, 2020-02, Vol.9 (2), p.184-188</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-72b5d60ce9b4ff91c2348fd4a6c562b5da231311e7e97e9e861892944c6226ee3</citedby><cites>FETCH-LOGICAL-c291t-72b5d60ce9b4ff91c2348fd4a6c562b5da231311e7e97e9e861892944c6226ee3</cites><orcidid>0000-0003-1581-5598 ; 0000-0002-9623-5087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8869792$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8869792$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Badiu, Mihai-Alin</creatorcontrib><creatorcontrib>Coon, Justin P.</creatorcontrib><title>Communication Through a Large Reflecting Surface With Phase Errors</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>Assume the communication between a source and a destination is supported by a large reflecting surface (LRS), which consists of an array of reflector elements with adjustable reflection phases. By knowing the phase shifts induced by the composite propagation channels through the LRS, the phases of the reflectors can be configured such that the signals combine coherently at the destination, which improves the communication performance. However, perfect phase estimation or high-precision configuration of the reflection phases is unfeasible. We study the transmission through an LRS with phase errors that have a generic distribution. We show that the LRS-based composite channel is equivalent to a direct channel with Nakagami scalar fading. This equivalent representation allows for theoretical analysis of the performance and can help the system designer study the interplay between performance, the distribution of phase errors, and the number of reflectors. Numerical evaluation of the error probability for a limited number of reflectors confirms the theoretical prediction and shows that the performance is remarkably robust against the phase errors.</description><subject>Communication</subject><subject>Equivalence</subject><subject>error probability</subject><subject>intelligent reflecting surface</subject><subject>large system analysis</subject><subject>meta-surface</subject><subject>Nakagami distribution</subject><subject>Nakagami fading</subject><subject>phase errors</subject><subject>Phase estimation</subject><subject>Phased arrays</subject><subject>Phases</subject><subject>Rayleigh channels</subject><subject>Receivers</subject><subject>Reflect-array</subject><subject>Reflection</subject><subject>Reflectors</subject><subject>Robustness (mathematics)</subject><subject>Signal to noise ratio</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWGrvgpeA56352mxy1KVWYUHRSo8hTSfdLe1uTXYP_ntTWjoMzMC88_UgdE_JlFKin6plOWWE6inTohAiv0IjRiXLGBf59SXnxS2axLglySShjKoReim7_X5oG2f7pmvxog7dsKmxxZUNG8Bf4Hfg-qbd4O8heOsAL5u-xp-1jYBnIXQh3qEbb3cRJuc4Rj-vs0X5llUf8_fyucoc07TPCrbK15I40CvhvaYuHaf8WljpcnmsWcYppxQK0MlBSap0-kc4yZgE4GP0eJp7CN3vALE3224IbVppGM-FJIVSJKnISeVCF2MAbw6h2dvwZygxR1gmwTJHWOYMK7U8nFoaALjIlZK60Iz_A-69Y6E</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Badiu, Mihai-Alin</creator><creator>Coon, Justin P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1581-5598</orcidid><orcidid>https://orcid.org/0000-0002-9623-5087</orcidid></search><sort><creationdate>20200201</creationdate><title>Communication Through a Large Reflecting Surface With Phase Errors</title><author>Badiu, Mihai-Alin ; Coon, Justin P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-72b5d60ce9b4ff91c2348fd4a6c562b5da231311e7e97e9e861892944c6226ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Communication</topic><topic>Equivalence</topic><topic>error probability</topic><topic>intelligent reflecting surface</topic><topic>large system analysis</topic><topic>meta-surface</topic><topic>Nakagami distribution</topic><topic>Nakagami fading</topic><topic>phase errors</topic><topic>Phase estimation</topic><topic>Phased arrays</topic><topic>Phases</topic><topic>Rayleigh channels</topic><topic>Receivers</topic><topic>Reflect-array</topic><topic>Reflection</topic><topic>Reflectors</topic><topic>Robustness (mathematics)</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badiu, Mihai-Alin</creatorcontrib><creatorcontrib>Coon, Justin P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badiu, Mihai-Alin</au><au>Coon, Justin P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication Through a Large Reflecting Surface With Phase Errors</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>9</volume><issue>2</issue><spage>184</spage><epage>188</epage><pages>184-188</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>Assume the communication between a source and a destination is supported by a large reflecting surface (LRS), which consists of an array of reflector elements with adjustable reflection phases. By knowing the phase shifts induced by the composite propagation channels through the LRS, the phases of the reflectors can be configured such that the signals combine coherently at the destination, which improves the communication performance. However, perfect phase estimation or high-precision configuration of the reflection phases is unfeasible. We study the transmission through an LRS with phase errors that have a generic distribution. We show that the LRS-based composite channel is equivalent to a direct channel with Nakagami scalar fading. This equivalent representation allows for theoretical analysis of the performance and can help the system designer study the interplay between performance, the distribution of phase errors, and the number of reflectors. Numerical evaluation of the error probability for a limited number of reflectors confirms the theoretical prediction and shows that the performance is remarkably robust against the phase errors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2019.2947445</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1581-5598</orcidid><orcidid>https://orcid.org/0000-0002-9623-5087</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-2337 |
ispartof | IEEE wireless communications letters, 2020-02, Vol.9 (2), p.184-188 |
issn | 2162-2337 2162-2345 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LWC_2019_2947445 |
source | IEEE Electronic Library (IEL) |
subjects | Communication Equivalence error probability intelligent reflecting surface large system analysis meta-surface Nakagami distribution Nakagami fading phase errors Phase estimation Phased arrays Phases Rayleigh channels Receivers Reflect-array Reflection Reflectors Robustness (mathematics) Signal to noise ratio |
title | Communication Through a Large Reflecting Surface With Phase Errors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication%20Through%20a%20Large%20Reflecting%20Surface%20With%20Phase%20Errors&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Badiu,%20Mihai-Alin&rft.date=2020-02-01&rft.volume=9&rft.issue=2&rft.spage=184&rft.epage=188&rft.pages=184-188&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2019.2947445&rft_dat=%3Cproquest_RIE%3E2354607880%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354607880&rft_id=info:pmid/&rft_ieee_id=8869792&rfr_iscdi=true |