Communication Through a Large Reflecting Surface With Phase Errors

Assume the communication between a source and a destination is supported by a large reflecting surface (LRS), which consists of an array of reflector elements with adjustable reflection phases. By knowing the phase shifts induced by the composite propagation channels through the LRS, the phases of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2020-02, Vol.9 (2), p.184-188
Hauptverfasser: Badiu, Mihai-Alin, Coon, Justin P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 2
container_start_page 184
container_title IEEE wireless communications letters
container_volume 9
creator Badiu, Mihai-Alin
Coon, Justin P.
description Assume the communication between a source and a destination is supported by a large reflecting surface (LRS), which consists of an array of reflector elements with adjustable reflection phases. By knowing the phase shifts induced by the composite propagation channels through the LRS, the phases of the reflectors can be configured such that the signals combine coherently at the destination, which improves the communication performance. However, perfect phase estimation or high-precision configuration of the reflection phases is unfeasible. We study the transmission through an LRS with phase errors that have a generic distribution. We show that the LRS-based composite channel is equivalent to a direct channel with Nakagami scalar fading. This equivalent representation allows for theoretical analysis of the performance and can help the system designer study the interplay between performance, the distribution of phase errors, and the number of reflectors. Numerical evaluation of the error probability for a limited number of reflectors confirms the theoretical prediction and shows that the performance is remarkably robust against the phase errors.
doi_str_mv 10.1109/LWC.2019.2947445
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LWC_2019_2947445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8869792</ieee_id><sourcerecordid>2354607880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-72b5d60ce9b4ff91c2348fd4a6c562b5da231311e7e97e9e861892944c6226ee3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGrvgpeA56352mxy1KVWYUHRSo8hTSfdLe1uTXYP_ntTWjoMzMC88_UgdE_JlFKin6plOWWE6inTohAiv0IjRiXLGBf59SXnxS2axLglySShjKoReim7_X5oG2f7pmvxog7dsKmxxZUNG8Bf4Hfg-qbd4O8heOsAL5u-xp-1jYBnIXQh3qEbb3cRJuc4Rj-vs0X5llUf8_fyucoc07TPCrbK15I40CvhvaYuHaf8WljpcnmsWcYppxQK0MlBSap0-kc4yZgE4GP0eJp7CN3vALE3224IbVppGM-FJIVSJKnISeVCF2MAbw6h2dvwZygxR1gmwTJHWOYMK7U8nFoaALjIlZK60Iz_A-69Y6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354607880</pqid></control><display><type>article</type><title>Communication Through a Large Reflecting Surface With Phase Errors</title><source>IEEE Electronic Library (IEL)</source><creator>Badiu, Mihai-Alin ; Coon, Justin P.</creator><creatorcontrib>Badiu, Mihai-Alin ; Coon, Justin P.</creatorcontrib><description>Assume the communication between a source and a destination is supported by a large reflecting surface (LRS), which consists of an array of reflector elements with adjustable reflection phases. By knowing the phase shifts induced by the composite propagation channels through the LRS, the phases of the reflectors can be configured such that the signals combine coherently at the destination, which improves the communication performance. However, perfect phase estimation or high-precision configuration of the reflection phases is unfeasible. We study the transmission through an LRS with phase errors that have a generic distribution. We show that the LRS-based composite channel is equivalent to a direct channel with Nakagami scalar fading. This equivalent representation allows for theoretical analysis of the performance and can help the system designer study the interplay between performance, the distribution of phase errors, and the number of reflectors. Numerical evaluation of the error probability for a limited number of reflectors confirms the theoretical prediction and shows that the performance is remarkably robust against the phase errors.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2019.2947445</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Communication ; Equivalence ; error probability ; intelligent reflecting surface ; large system analysis ; meta-surface ; Nakagami distribution ; Nakagami fading ; phase errors ; Phase estimation ; Phased arrays ; Phases ; Rayleigh channels ; Receivers ; Reflect-array ; Reflection ; Reflectors ; Robustness (mathematics) ; Signal to noise ratio</subject><ispartof>IEEE wireless communications letters, 2020-02, Vol.9 (2), p.184-188</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-72b5d60ce9b4ff91c2348fd4a6c562b5da231311e7e97e9e861892944c6226ee3</citedby><cites>FETCH-LOGICAL-c291t-72b5d60ce9b4ff91c2348fd4a6c562b5da231311e7e97e9e861892944c6226ee3</cites><orcidid>0000-0003-1581-5598 ; 0000-0002-9623-5087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8869792$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8869792$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Badiu, Mihai-Alin</creatorcontrib><creatorcontrib>Coon, Justin P.</creatorcontrib><title>Communication Through a Large Reflecting Surface With Phase Errors</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>Assume the communication between a source and a destination is supported by a large reflecting surface (LRS), which consists of an array of reflector elements with adjustable reflection phases. By knowing the phase shifts induced by the composite propagation channels through the LRS, the phases of the reflectors can be configured such that the signals combine coherently at the destination, which improves the communication performance. However, perfect phase estimation or high-precision configuration of the reflection phases is unfeasible. We study the transmission through an LRS with phase errors that have a generic distribution. We show that the LRS-based composite channel is equivalent to a direct channel with Nakagami scalar fading. This equivalent representation allows for theoretical analysis of the performance and can help the system designer study the interplay between performance, the distribution of phase errors, and the number of reflectors. Numerical evaluation of the error probability for a limited number of reflectors confirms the theoretical prediction and shows that the performance is remarkably robust against the phase errors.</description><subject>Communication</subject><subject>Equivalence</subject><subject>error probability</subject><subject>intelligent reflecting surface</subject><subject>large system analysis</subject><subject>meta-surface</subject><subject>Nakagami distribution</subject><subject>Nakagami fading</subject><subject>phase errors</subject><subject>Phase estimation</subject><subject>Phased arrays</subject><subject>Phases</subject><subject>Rayleigh channels</subject><subject>Receivers</subject><subject>Reflect-array</subject><subject>Reflection</subject><subject>Reflectors</subject><subject>Robustness (mathematics)</subject><subject>Signal to noise ratio</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWGrvgpeA56352mxy1KVWYUHRSo8hTSfdLe1uTXYP_ntTWjoMzMC88_UgdE_JlFKin6plOWWE6inTohAiv0IjRiXLGBf59SXnxS2axLglySShjKoReim7_X5oG2f7pmvxog7dsKmxxZUNG8Bf4Hfg-qbd4O8heOsAL5u-xp-1jYBnIXQh3qEbb3cRJuc4Rj-vs0X5llUf8_fyucoc07TPCrbK15I40CvhvaYuHaf8WljpcnmsWcYppxQK0MlBSap0-kc4yZgE4GP0eJp7CN3vALE3224IbVppGM-FJIVSJKnISeVCF2MAbw6h2dvwZygxR1gmwTJHWOYMK7U8nFoaALjIlZK60Iz_A-69Y6E</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Badiu, Mihai-Alin</creator><creator>Coon, Justin P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1581-5598</orcidid><orcidid>https://orcid.org/0000-0002-9623-5087</orcidid></search><sort><creationdate>20200201</creationdate><title>Communication Through a Large Reflecting Surface With Phase Errors</title><author>Badiu, Mihai-Alin ; Coon, Justin P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-72b5d60ce9b4ff91c2348fd4a6c562b5da231311e7e97e9e861892944c6226ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Communication</topic><topic>Equivalence</topic><topic>error probability</topic><topic>intelligent reflecting surface</topic><topic>large system analysis</topic><topic>meta-surface</topic><topic>Nakagami distribution</topic><topic>Nakagami fading</topic><topic>phase errors</topic><topic>Phase estimation</topic><topic>Phased arrays</topic><topic>Phases</topic><topic>Rayleigh channels</topic><topic>Receivers</topic><topic>Reflect-array</topic><topic>Reflection</topic><topic>Reflectors</topic><topic>Robustness (mathematics)</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badiu, Mihai-Alin</creatorcontrib><creatorcontrib>Coon, Justin P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badiu, Mihai-Alin</au><au>Coon, Justin P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication Through a Large Reflecting Surface With Phase Errors</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>9</volume><issue>2</issue><spage>184</spage><epage>188</epage><pages>184-188</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>Assume the communication between a source and a destination is supported by a large reflecting surface (LRS), which consists of an array of reflector elements with adjustable reflection phases. By knowing the phase shifts induced by the composite propagation channels through the LRS, the phases of the reflectors can be configured such that the signals combine coherently at the destination, which improves the communication performance. However, perfect phase estimation or high-precision configuration of the reflection phases is unfeasible. We study the transmission through an LRS with phase errors that have a generic distribution. We show that the LRS-based composite channel is equivalent to a direct channel with Nakagami scalar fading. This equivalent representation allows for theoretical analysis of the performance and can help the system designer study the interplay between performance, the distribution of phase errors, and the number of reflectors. Numerical evaluation of the error probability for a limited number of reflectors confirms the theoretical prediction and shows that the performance is remarkably robust against the phase errors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2019.2947445</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1581-5598</orcidid><orcidid>https://orcid.org/0000-0002-9623-5087</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2020-02, Vol.9 (2), p.184-188
issn 2162-2337
2162-2345
language eng
recordid cdi_crossref_primary_10_1109_LWC_2019_2947445
source IEEE Electronic Library (IEL)
subjects Communication
Equivalence
error probability
intelligent reflecting surface
large system analysis
meta-surface
Nakagami distribution
Nakagami fading
phase errors
Phase estimation
Phased arrays
Phases
Rayleigh channels
Receivers
Reflect-array
Reflection
Reflectors
Robustness (mathematics)
Signal to noise ratio
title Communication Through a Large Reflecting Surface With Phase Errors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication%20Through%20a%20Large%20Reflecting%20Surface%20With%20Phase%20Errors&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Badiu,%20Mihai-Alin&rft.date=2020-02-01&rft.volume=9&rft.issue=2&rft.spage=184&rft.epage=188&rft.pages=184-188&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2019.2947445&rft_dat=%3Cproquest_RIE%3E2354607880%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354607880&rft_id=info:pmid/&rft_ieee_id=8869792&rfr_iscdi=true