Optimal Epidemic Information Dissemination in Uncertain Dynamic Environment

Optimization of stochastic epidemic information dissemination plays a significant role in enhancing the reliability of epidemic networks. This letter proposes a multi-stage decision-making optimization model for stochastic epidemic information dissemination based on dynamic programming, in which unc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2018-08, Vol.7 (4), p.518-521
Hauptverfasser: Daxin Tian, Ziyi Dai, Jianshan Zhou, Xuting Duan, Zhengguo Sheng, Min Chen, Qiang Ni, Leung, Victor C. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 521
container_issue 4
container_start_page 518
container_title IEEE wireless communications letters
container_volume 7
creator Daxin Tian
Ziyi Dai
Jianshan Zhou
Xuting Duan
Zhengguo Sheng
Min Chen
Qiang Ni
Leung, Victor C. M.
description Optimization of stochastic epidemic information dissemination plays a significant role in enhancing the reliability of epidemic networks. This letter proposes a multi-stage decision-making optimization model for stochastic epidemic information dissemination based on dynamic programming, in which uncertainties in a dynamic environment are taken into account. We model the inherent bimodal dynamics of general epidemic mechanisms as a Markov chain, and a state transition equation is proposed based on this Markov chain. We further derive optimal policies and a theoretical closed-form expression for the maximal expected number of successfully delivered messages. The properties of the derived model are theoretically analyzed. Simulation results show an improvement in reliability, in terms of accumulative number of successfully delivered messages, of epidemic information dissemination in stochastic situations.
doi_str_mv 10.1109/LWC.2018.2792023
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LWC_2018_2792023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8254377</ieee_id><sourcerecordid>2117149424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-9dcea8f01afd7563d4d8061430b9702ccec5551485798345fffd9226d99a25ad3</originalsourceid><addsrcrecordid>eNo9UE1LAzEQDaJgqb0LXhY8b83nJjlKW7VY6MXiMcR8QEo3uyZbof_elC2dy7wZ3pvhPQAeEZwjBOXL5nsxxxCJOeYSQ0xuwASjBteYUHZ7xYTfg1nOe1iqgQgjMQGf234IrT5Uqz5Y1wZTraPvUquH0MVqGXIuyzhOIVa7aFwadEHLU9Rn-ir-hdTF1sXhAdx5fchudulTsHtbfS0-6s32fb143dQGi2aopTVOCw-R9pazhlhqBWwQJfBHcoiNcYYxhqhgXIpiwHtvJcaNlVJjpi2Zgufxbp-636PLg9p3xxTLS4UR4ohKimlhwZFlUpdzcl71qThNJ4WgOqemSmrqnJq6pFYkT6MkOOeudIEZJZyTfxZQZ-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117149424</pqid></control><display><type>article</type><title>Optimal Epidemic Information Dissemination in Uncertain Dynamic Environment</title><source>IEEE Electronic Library (IEL)</source><creator>Daxin Tian ; Ziyi Dai ; Jianshan Zhou ; Xuting Duan ; Zhengguo Sheng ; Min Chen ; Qiang Ni ; Leung, Victor C. M.</creator><creatorcontrib>Daxin Tian ; Ziyi Dai ; Jianshan Zhou ; Xuting Duan ; Zhengguo Sheng ; Min Chen ; Qiang Ni ; Leung, Victor C. M.</creatorcontrib><description>Optimization of stochastic epidemic information dissemination plays a significant role in enhancing the reliability of epidemic networks. This letter proposes a multi-stage decision-making optimization model for stochastic epidemic information dissemination based on dynamic programming, in which uncertainties in a dynamic environment are taken into account. We model the inherent bimodal dynamics of general epidemic mechanisms as a Markov chain, and a state transition equation is proposed based on this Markov chain. We further derive optimal policies and a theoretical closed-form expression for the maximal expected number of successfully delivered messages. The properties of the derived model are theoretically analyzed. Simulation results show an improvement in reliability, in terms of accumulative number of successfully delivered messages, of epidemic information dissemination in stochastic situations.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2018.2792023</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computer simulation ; Decision making ; Dynamic programming ; Electronic mail ; Epidemic mechanisms ; Epidemics ; Information dissemination ; Manganese ; Markov analysis ; Markov chain ; Markov chains ; Markov processes ; Mathematical model ; Messages ; Network reliability ; Optimization ; Reliability ; Reliability analysis</subject><ispartof>IEEE wireless communications letters, 2018-08, Vol.7 (4), p.518-521</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-9dcea8f01afd7563d4d8061430b9702ccec5551485798345fffd9226d99a25ad3</cites><orcidid>0000-0002-4987-4695 ; 0000-0002-4593-1656 ; 0000-0003-3529-2640 ; 0000-0001-5931-8310 ; 0000-0003-2143-4003 ; 0000-0002-0960-4447 ; 0000-0001-7796-5650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8254377$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8254377$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Daxin Tian</creatorcontrib><creatorcontrib>Ziyi Dai</creatorcontrib><creatorcontrib>Jianshan Zhou</creatorcontrib><creatorcontrib>Xuting Duan</creatorcontrib><creatorcontrib>Zhengguo Sheng</creatorcontrib><creatorcontrib>Min Chen</creatorcontrib><creatorcontrib>Qiang Ni</creatorcontrib><creatorcontrib>Leung, Victor C. M.</creatorcontrib><title>Optimal Epidemic Information Dissemination in Uncertain Dynamic Environment</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>Optimization of stochastic epidemic information dissemination plays a significant role in enhancing the reliability of epidemic networks. This letter proposes a multi-stage decision-making optimization model for stochastic epidemic information dissemination based on dynamic programming, in which uncertainties in a dynamic environment are taken into account. We model the inherent bimodal dynamics of general epidemic mechanisms as a Markov chain, and a state transition equation is proposed based on this Markov chain. We further derive optimal policies and a theoretical closed-form expression for the maximal expected number of successfully delivered messages. The properties of the derived model are theoretically analyzed. Simulation results show an improvement in reliability, in terms of accumulative number of successfully delivered messages, of epidemic information dissemination in stochastic situations.</description><subject>Computer simulation</subject><subject>Decision making</subject><subject>Dynamic programming</subject><subject>Electronic mail</subject><subject>Epidemic mechanisms</subject><subject>Epidemics</subject><subject>Information dissemination</subject><subject>Manganese</subject><subject>Markov analysis</subject><subject>Markov chain</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical model</subject><subject>Messages</subject><subject>Network reliability</subject><subject>Optimization</subject><subject>Reliability</subject><subject>Reliability analysis</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1LAzEQDaJgqb0LXhY8b83nJjlKW7VY6MXiMcR8QEo3uyZbof_elC2dy7wZ3pvhPQAeEZwjBOXL5nsxxxCJOeYSQ0xuwASjBteYUHZ7xYTfg1nOe1iqgQgjMQGf234IrT5Uqz5Y1wZTraPvUquH0MVqGXIuyzhOIVa7aFwadEHLU9Rn-ir-hdTF1sXhAdx5fchudulTsHtbfS0-6s32fb143dQGi2aopTVOCw-R9pazhlhqBWwQJfBHcoiNcYYxhqhgXIpiwHtvJcaNlVJjpi2Zgufxbp-636PLg9p3xxTLS4UR4ohKimlhwZFlUpdzcl71qThNJ4WgOqemSmrqnJq6pFYkT6MkOOeudIEZJZyTfxZQZ-Y</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Daxin Tian</creator><creator>Ziyi Dai</creator><creator>Jianshan Zhou</creator><creator>Xuting Duan</creator><creator>Zhengguo Sheng</creator><creator>Min Chen</creator><creator>Qiang Ni</creator><creator>Leung, Victor C. M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4987-4695</orcidid><orcidid>https://orcid.org/0000-0002-4593-1656</orcidid><orcidid>https://orcid.org/0000-0003-3529-2640</orcidid><orcidid>https://orcid.org/0000-0001-5931-8310</orcidid><orcidid>https://orcid.org/0000-0003-2143-4003</orcidid><orcidid>https://orcid.org/0000-0002-0960-4447</orcidid><orcidid>https://orcid.org/0000-0001-7796-5650</orcidid></search><sort><creationdate>20180801</creationdate><title>Optimal Epidemic Information Dissemination in Uncertain Dynamic Environment</title><author>Daxin Tian ; Ziyi Dai ; Jianshan Zhou ; Xuting Duan ; Zhengguo Sheng ; Min Chen ; Qiang Ni ; Leung, Victor C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-9dcea8f01afd7563d4d8061430b9702ccec5551485798345fffd9226d99a25ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Decision making</topic><topic>Dynamic programming</topic><topic>Electronic mail</topic><topic>Epidemic mechanisms</topic><topic>Epidemics</topic><topic>Information dissemination</topic><topic>Manganese</topic><topic>Markov analysis</topic><topic>Markov chain</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical model</topic><topic>Messages</topic><topic>Network reliability</topic><topic>Optimization</topic><topic>Reliability</topic><topic>Reliability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daxin Tian</creatorcontrib><creatorcontrib>Ziyi Dai</creatorcontrib><creatorcontrib>Jianshan Zhou</creatorcontrib><creatorcontrib>Xuting Duan</creatorcontrib><creatorcontrib>Zhengguo Sheng</creatorcontrib><creatorcontrib>Min Chen</creatorcontrib><creatorcontrib>Qiang Ni</creatorcontrib><creatorcontrib>Leung, Victor C. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Daxin Tian</au><au>Ziyi Dai</au><au>Jianshan Zhou</au><au>Xuting Duan</au><au>Zhengguo Sheng</au><au>Min Chen</au><au>Qiang Ni</au><au>Leung, Victor C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Epidemic Information Dissemination in Uncertain Dynamic Environment</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>7</volume><issue>4</issue><spage>518</spage><epage>521</epage><pages>518-521</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>Optimization of stochastic epidemic information dissemination plays a significant role in enhancing the reliability of epidemic networks. This letter proposes a multi-stage decision-making optimization model for stochastic epidemic information dissemination based on dynamic programming, in which uncertainties in a dynamic environment are taken into account. We model the inherent bimodal dynamics of general epidemic mechanisms as a Markov chain, and a state transition equation is proposed based on this Markov chain. We further derive optimal policies and a theoretical closed-form expression for the maximal expected number of successfully delivered messages. The properties of the derived model are theoretically analyzed. Simulation results show an improvement in reliability, in terms of accumulative number of successfully delivered messages, of epidemic information dissemination in stochastic situations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2018.2792023</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4987-4695</orcidid><orcidid>https://orcid.org/0000-0002-4593-1656</orcidid><orcidid>https://orcid.org/0000-0003-3529-2640</orcidid><orcidid>https://orcid.org/0000-0001-5931-8310</orcidid><orcidid>https://orcid.org/0000-0003-2143-4003</orcidid><orcidid>https://orcid.org/0000-0002-0960-4447</orcidid><orcidid>https://orcid.org/0000-0001-7796-5650</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2018-08, Vol.7 (4), p.518-521
issn 2162-2337
2162-2345
language eng
recordid cdi_crossref_primary_10_1109_LWC_2018_2792023
source IEEE Electronic Library (IEL)
subjects Computer simulation
Decision making
Dynamic programming
Electronic mail
Epidemic mechanisms
Epidemics
Information dissemination
Manganese
Markov analysis
Markov chain
Markov chains
Markov processes
Mathematical model
Messages
Network reliability
Optimization
Reliability
Reliability analysis
title Optimal Epidemic Information Dissemination in Uncertain Dynamic Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Epidemic%20Information%20Dissemination%20in%20Uncertain%20Dynamic%20Environment&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Daxin%20Tian&rft.date=2018-08-01&rft.volume=7&rft.issue=4&rft.spage=518&rft.epage=521&rft.pages=518-521&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2018.2792023&rft_dat=%3Cproquest_RIE%3E2117149424%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117149424&rft_id=info:pmid/&rft_ieee_id=8254377&rfr_iscdi=true