Double Branches and Stages Neural Network for Joint Acoustic Echo and Noise Suppression
In this letter, we propose a collaborative neural network framework for acoustic echo cancellation (AEC) tasks, where echo paths and spatial information are efficiently modeled through a two-stage subnetwork cascade to jointly repair the complex spectrum of the target speech. Specifically, we design...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2024, Vol.31, p.2150-2154 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2154 |
---|---|
container_issue | |
container_start_page | 2150 |
container_title | IEEE signal processing letters |
container_volume | 31 |
creator | Zhu, Taohua Qian, Guobing |
description | In this letter, we propose a collaborative neural network framework for acoustic echo cancellation (AEC) tasks, where echo paths and spatial information are efficiently modeled through a two-stage subnetwork cascade to jointly repair the complex spectrum of the target speech. Specifically, we design a two-path structure consisting of a real part and an imaginary part as well as an amplitude phase, a lightweight network module to suppress part of the echo and potential noise in the first stage, and a larger network to estimate the complex residuals for phase correction and spectral restoration in the second stage. In order to maximize the performance of the model at each stage, we propose two convolutional modules: an inplace gate convolutional module and a complex squeezed temporal convolutional module (CSTCM). In addition, a cross-domain loss function is designed to improve the generalization capability. Experiments are conducted under various mismatch scenarios, and the results show that the proposed dual-path staging method provides superior performance over other advanced methods. |
doi_str_mv | 10.1109/LSP.2024.3441492 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2024_3441492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10632590</ieee_id><sourcerecordid>3097922362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-4582772562d33c540f9d4144daa0e92fc4ea5e4db87efe510dc289d0f7723553</originalsourceid><addsrcrecordid>eNpNkEtPAjEUhRujiYjuXbho4nrw9sVMl4j4CkETSFw2pXNHBnGK7UyM_94iLFydszjffRxCLhkMGAN9M52_DjhwORBSMqn5EekxpYqMiyE7Th5yyLSG4pScxbgGgIIVqkfe7ny33CC9DbZxK4zUNiWdt_Y92Rl2wW6StN8-fNDKB_rs66alI-e72NaOTtzK_xEzX0ek8267DRhj7ZtzclLZTcSLg_bJ4n6yGD9m05eHp_FomjmWqzaTquB5ztWQl0I4JaHSZTpfltYCal45iVahLJdFjhUqBqXjhS6hSpBQSvTJ9X7sNvivDmNr1r4LTdpoBOhc8_Q-TynYp1zwMQaszDbUnzb8GAZm155J7Zlde-bQXkKu9kiNiP_iQ8GVBvEL4Atqew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097922362</pqid></control><display><type>article</type><title>Double Branches and Stages Neural Network for Joint Acoustic Echo and Noise Suppression</title><source>IEEE Electronic Library Online</source><creator>Zhu, Taohua ; Qian, Guobing</creator><creatorcontrib>Zhu, Taohua ; Qian, Guobing</creatorcontrib><description>In this letter, we propose a collaborative neural network framework for acoustic echo cancellation (AEC) tasks, where echo paths and spatial information are efficiently modeled through a two-stage subnetwork cascade to jointly repair the complex spectrum of the target speech. Specifically, we design a two-path structure consisting of a real part and an imaginary part as well as an amplitude phase, a lightweight network module to suppress part of the echo and potential noise in the first stage, and a larger network to estimate the complex residuals for phase correction and spectral restoration in the second stage. In order to maximize the performance of the model at each stage, we propose two convolutional modules: an inplace gate convolutional module and a complex squeezed temporal convolutional module (CSTCM). In addition, a cross-domain loss function is designed to improve the generalization capability. Experiments are conducted under various mismatch scenarios, and the results show that the proposed dual-path staging method provides superior performance over other advanced methods.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2024.3441492</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic echo cancellation ; Acoustics ; complex domain ; Convolution ; deep learning ; double branches and stages ; Logic gates ; Long short term memory ; Microphones ; Modules ; Neural networks ; Noise reduction ; single-channel ; Spatial data ; Task complexity ; Time-frequency analysis</subject><ispartof>IEEE signal processing letters, 2024, Vol.31, p.2150-2154</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-4582772562d33c540f9d4144daa0e92fc4ea5e4db87efe510dc289d0f7723553</cites><orcidid>0009-0008-8903-1255 ; 0000-0003-0470-0154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10632590$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10632590$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Taohua</creatorcontrib><creatorcontrib>Qian, Guobing</creatorcontrib><title>Double Branches and Stages Neural Network for Joint Acoustic Echo and Noise Suppression</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>In this letter, we propose a collaborative neural network framework for acoustic echo cancellation (AEC) tasks, where echo paths and spatial information are efficiently modeled through a two-stage subnetwork cascade to jointly repair the complex spectrum of the target speech. Specifically, we design a two-path structure consisting of a real part and an imaginary part as well as an amplitude phase, a lightweight network module to suppress part of the echo and potential noise in the first stage, and a larger network to estimate the complex residuals for phase correction and spectral restoration in the second stage. In order to maximize the performance of the model at each stage, we propose two convolutional modules: an inplace gate convolutional module and a complex squeezed temporal convolutional module (CSTCM). In addition, a cross-domain loss function is designed to improve the generalization capability. Experiments are conducted under various mismatch scenarios, and the results show that the proposed dual-path staging method provides superior performance over other advanced methods.</description><subject>Acoustic echo cancellation</subject><subject>Acoustics</subject><subject>complex domain</subject><subject>Convolution</subject><subject>deep learning</subject><subject>double branches and stages</subject><subject>Logic gates</subject><subject>Long short term memory</subject><subject>Microphones</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>single-channel</subject><subject>Spatial data</subject><subject>Task complexity</subject><subject>Time-frequency analysis</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPAjEUhRujiYjuXbho4nrw9sVMl4j4CkETSFw2pXNHBnGK7UyM_94iLFydszjffRxCLhkMGAN9M52_DjhwORBSMqn5EekxpYqMiyE7Th5yyLSG4pScxbgGgIIVqkfe7ny33CC9DbZxK4zUNiWdt_Y92Rl2wW6StN8-fNDKB_rs66alI-e72NaOTtzK_xEzX0ek8267DRhj7ZtzclLZTcSLg_bJ4n6yGD9m05eHp_FomjmWqzaTquB5ztWQl0I4JaHSZTpfltYCal45iVahLJdFjhUqBqXjhS6hSpBQSvTJ9X7sNvivDmNr1r4LTdpoBOhc8_Q-TynYp1zwMQaszDbUnzb8GAZm155J7Zlde-bQXkKu9kiNiP_iQ8GVBvEL4Atqew</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhu, Taohua</creator><creator>Qian, Guobing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0008-8903-1255</orcidid><orcidid>https://orcid.org/0000-0003-0470-0154</orcidid></search><sort><creationdate>2024</creationdate><title>Double Branches and Stages Neural Network for Joint Acoustic Echo and Noise Suppression</title><author>Zhu, Taohua ; Qian, Guobing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-4582772562d33c540f9d4144daa0e92fc4ea5e4db87efe510dc289d0f7723553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic echo cancellation</topic><topic>Acoustics</topic><topic>complex domain</topic><topic>Convolution</topic><topic>deep learning</topic><topic>double branches and stages</topic><topic>Logic gates</topic><topic>Long short term memory</topic><topic>Microphones</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>single-channel</topic><topic>Spatial data</topic><topic>Task complexity</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Taohua</creatorcontrib><creatorcontrib>Qian, Guobing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Taohua</au><au>Qian, Guobing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double Branches and Stages Neural Network for Joint Acoustic Echo and Noise Suppression</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2024</date><risdate>2024</risdate><volume>31</volume><spage>2150</spage><epage>2154</epage><pages>2150-2154</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>In this letter, we propose a collaborative neural network framework for acoustic echo cancellation (AEC) tasks, where echo paths and spatial information are efficiently modeled through a two-stage subnetwork cascade to jointly repair the complex spectrum of the target speech. Specifically, we design a two-path structure consisting of a real part and an imaginary part as well as an amplitude phase, a lightweight network module to suppress part of the echo and potential noise in the first stage, and a larger network to estimate the complex residuals for phase correction and spectral restoration in the second stage. In order to maximize the performance of the model at each stage, we propose two convolutional modules: an inplace gate convolutional module and a complex squeezed temporal convolutional module (CSTCM). In addition, a cross-domain loss function is designed to improve the generalization capability. Experiments are conducted under various mismatch scenarios, and the results show that the proposed dual-path staging method provides superior performance over other advanced methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2024.3441492</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0008-8903-1255</orcidid><orcidid>https://orcid.org/0000-0003-0470-0154</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2024, Vol.31, p.2150-2154 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LSP_2024_3441492 |
source | IEEE Electronic Library Online |
subjects | Acoustic echo cancellation Acoustics complex domain Convolution deep learning double branches and stages Logic gates Long short term memory Microphones Modules Neural networks Noise reduction single-channel Spatial data Task complexity Time-frequency analysis |
title | Double Branches and Stages Neural Network for Joint Acoustic Echo and Noise Suppression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double%20Branches%20and%20Stages%20Neural%20Network%20for%20Joint%20Acoustic%20Echo%20and%20Noise%20Suppression&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Zhu,%20Taohua&rft.date=2024&rft.volume=31&rft.spage=2150&rft.epage=2154&rft.pages=2150-2154&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2024.3441492&rft_dat=%3Cproquest_RIE%3E3097922362%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097922362&rft_id=info:pmid/&rft_ieee_id=10632590&rfr_iscdi=true |