RF-Based Drone Detection Enhancement via a Generalized Denoising and Interference-Removal Framework
Radio frequency-based (RF-based) detection methods are currently the main means of countering drones. However, these prevalent approaches frequently exhibit deficiencies in effectively addressing noise and interference, making them potentially unsuitable for application in realistic urban environmen...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2024, Vol.31, p.929-933 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 933 |
---|---|
container_issue | |
container_start_page | 929 |
container_title | IEEE signal processing letters |
container_volume | 31 |
creator | Wang, Ziqi Cao, Zihan Xie, Julan Zhang, Wei He, Zishu |
description | Radio frequency-based (RF-based) detection methods are currently the main means of countering drones. However, these prevalent approaches frequently exhibit deficiencies in effectively addressing noise and interference, making them potentially unsuitable for application in realistic urban environments. This letter proposes a generalized RF signal-enhanced framework that explicitly addresses noise and interference. We decompose the RF signal into three components and uniformly integrate them into the proposed framework for decomposition. To accomplish this, three innovative loss functions and two appropriate neural networks are devised. To validate our framework, we create a real-world drone RF dataset sampled from urban surroundings, faithfully representing drone RF signals in real-world scenarios. Experimental results demonstrate that our framework exhibits satisfactory denoising and interference-removal performance, significantly improving the accuracy of multiple detection methods. |
doi_str_mv | 10.1109/LSP.2024.3379006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2024_3379006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10475428</ieee_id><sourcerecordid>3031398278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-aeef874c8e3957162f7161634f3f4baed1868076f85aefdf31cb78ca8ec1bfd83</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk45x0nsjNAvKlUCFZgt1zlDSmMXOy2CX0-qdmC594bnvZMeQq4ZDBiD8m7-8jxIIc0GnIsSoDghPZbnMkl5wU67HQQkZQnynFzEuAIAyWTeI2YxSR50xIqOgndIR9iiaWvv6Nh9aGewQdfSXa2pplN0GPS6_t3T6Hwda_dOtavozLUYLAbsCskCG7_TazoJusFvHz4vyZnV64hXx-yTt8n4dfiYzJ-ms-H9PDFplreJRrRSZEYiL3PBitR2gxU8s9xmS40Vk4UEUViZa7SV5cwshTRaomFLW0neJ7eHu5vgv7YYW7Xy2-C6l4oDZ7yUqdhTcKBM8DEGtGoT6kaHH8VA7VWqTqXaq1RHlV3l5lCpEfEfnok8SyX_AwTrcHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031398278</pqid></control><display><type>article</type><title>RF-Based Drone Detection Enhancement via a Generalized Denoising and Interference-Removal Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Ziqi ; Cao, Zihan ; Xie, Julan ; Zhang, Wei ; He, Zishu</creator><creatorcontrib>Wang, Ziqi ; Cao, Zihan ; Xie, Julan ; Zhang, Wei ; He, Zishu</creatorcontrib><description>Radio frequency-based (RF-based) detection methods are currently the main means of countering drones. However, these prevalent approaches frequently exhibit deficiencies in effectively addressing noise and interference, making them potentially unsuitable for application in realistic urban environments. This letter proposes a generalized RF signal-enhanced framework that explicitly addresses noise and interference. We decompose the RF signal into three components and uniformly integrate them into the proposed framework for decomposition. To accomplish this, three innovative loss functions and two appropriate neural networks are devised. To validate our framework, we create a real-world drone RF dataset sampled from urban surroundings, faithfully representing drone RF signals in real-world scenarios. Experimental results demonstrate that our framework exhibits satisfactory denoising and interference-removal performance, significantly improving the accuracy of multiple detection methods.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2024.3379006</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Decomposition ; Denoise ; drone detection ; Drones ; Feature extraction ; Interference ; interference-removal ; Neural networks ; Noise reduction ; Radio frequency ; radio frequency signal ; RF signals ; Time-frequency analysis ; Urban environments</subject><ispartof>IEEE signal processing letters, 2024, Vol.31, p.929-933</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-aeef874c8e3957162f7161634f3f4baed1868076f85aefdf31cb78ca8ec1bfd83</cites><orcidid>0000-0002-1369-7025 ; 0009-0001-4872-7335 ; 0000-0002-7532-2122 ; 0000-0003-4491-8414 ; 0000-0002-1218-9475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10475428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,4012,27906,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10475428$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Ziqi</creatorcontrib><creatorcontrib>Cao, Zihan</creatorcontrib><creatorcontrib>Xie, Julan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>He, Zishu</creatorcontrib><title>RF-Based Drone Detection Enhancement via a Generalized Denoising and Interference-Removal Framework</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Radio frequency-based (RF-based) detection methods are currently the main means of countering drones. However, these prevalent approaches frequently exhibit deficiencies in effectively addressing noise and interference, making them potentially unsuitable for application in realistic urban environments. This letter proposes a generalized RF signal-enhanced framework that explicitly addresses noise and interference. We decompose the RF signal into three components and uniformly integrate them into the proposed framework for decomposition. To accomplish this, three innovative loss functions and two appropriate neural networks are devised. To validate our framework, we create a real-world drone RF dataset sampled from urban surroundings, faithfully representing drone RF signals in real-world scenarios. Experimental results demonstrate that our framework exhibits satisfactory denoising and interference-removal performance, significantly improving the accuracy of multiple detection methods.</description><subject>Antenna arrays</subject><subject>Decomposition</subject><subject>Denoise</subject><subject>drone detection</subject><subject>Drones</subject><subject>Feature extraction</subject><subject>Interference</subject><subject>interference-removal</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Radio frequency</subject><subject>radio frequency signal</subject><subject>RF signals</subject><subject>Time-frequency analysis</subject><subject>Urban environments</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk45x0nsjNAvKlUCFZgt1zlDSmMXOy2CX0-qdmC594bnvZMeQq4ZDBiD8m7-8jxIIc0GnIsSoDghPZbnMkl5wU67HQQkZQnynFzEuAIAyWTeI2YxSR50xIqOgndIR9iiaWvv6Nh9aGewQdfSXa2pplN0GPS6_t3T6Hwda_dOtavozLUYLAbsCskCG7_TazoJusFvHz4vyZnV64hXx-yTt8n4dfiYzJ-ms-H9PDFplreJRrRSZEYiL3PBitR2gxU8s9xmS40Vk4UEUViZa7SV5cwshTRaomFLW0neJ7eHu5vgv7YYW7Xy2-C6l4oDZ7yUqdhTcKBM8DEGtGoT6kaHH8VA7VWqTqXaq1RHlV3l5lCpEfEfnok8SyX_AwTrcHY</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Ziqi</creator><creator>Cao, Zihan</creator><creator>Xie, Julan</creator><creator>Zhang, Wei</creator><creator>He, Zishu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1369-7025</orcidid><orcidid>https://orcid.org/0009-0001-4872-7335</orcidid><orcidid>https://orcid.org/0000-0002-7532-2122</orcidid><orcidid>https://orcid.org/0000-0003-4491-8414</orcidid><orcidid>https://orcid.org/0000-0002-1218-9475</orcidid></search><sort><creationdate>2024</creationdate><title>RF-Based Drone Detection Enhancement via a Generalized Denoising and Interference-Removal Framework</title><author>Wang, Ziqi ; Cao, Zihan ; Xie, Julan ; Zhang, Wei ; He, Zishu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-aeef874c8e3957162f7161634f3f4baed1868076f85aefdf31cb78ca8ec1bfd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antenna arrays</topic><topic>Decomposition</topic><topic>Denoise</topic><topic>drone detection</topic><topic>Drones</topic><topic>Feature extraction</topic><topic>Interference</topic><topic>interference-removal</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Radio frequency</topic><topic>radio frequency signal</topic><topic>RF signals</topic><topic>Time-frequency analysis</topic><topic>Urban environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ziqi</creatorcontrib><creatorcontrib>Cao, Zihan</creatorcontrib><creatorcontrib>Xie, Julan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>He, Zishu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Ziqi</au><au>Cao, Zihan</au><au>Xie, Julan</au><au>Zhang, Wei</au><au>He, Zishu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RF-Based Drone Detection Enhancement via a Generalized Denoising and Interference-Removal Framework</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2024</date><risdate>2024</risdate><volume>31</volume><spage>929</spage><epage>933</epage><pages>929-933</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Radio frequency-based (RF-based) detection methods are currently the main means of countering drones. However, these prevalent approaches frequently exhibit deficiencies in effectively addressing noise and interference, making them potentially unsuitable for application in realistic urban environments. This letter proposes a generalized RF signal-enhanced framework that explicitly addresses noise and interference. We decompose the RF signal into three components and uniformly integrate them into the proposed framework for decomposition. To accomplish this, three innovative loss functions and two appropriate neural networks are devised. To validate our framework, we create a real-world drone RF dataset sampled from urban surroundings, faithfully representing drone RF signals in real-world scenarios. Experimental results demonstrate that our framework exhibits satisfactory denoising and interference-removal performance, significantly improving the accuracy of multiple detection methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2024.3379006</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1369-7025</orcidid><orcidid>https://orcid.org/0009-0001-4872-7335</orcidid><orcidid>https://orcid.org/0000-0002-7532-2122</orcidid><orcidid>https://orcid.org/0000-0003-4491-8414</orcidid><orcidid>https://orcid.org/0000-0002-1218-9475</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2024, Vol.31, p.929-933 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LSP_2024_3379006 |
source | IEEE Electronic Library (IEL) |
subjects | Antenna arrays Decomposition Denoise drone detection Drones Feature extraction Interference interference-removal Neural networks Noise reduction Radio frequency radio frequency signal RF signals Time-frequency analysis Urban environments |
title | RF-Based Drone Detection Enhancement via a Generalized Denoising and Interference-Removal Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RF-Based%20Drone%20Detection%20Enhancement%20via%20a%20Generalized%20Denoising%20and%20Interference-Removal%20Framework&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Wang,%20Ziqi&rft.date=2024&rft.volume=31&rft.spage=929&rft.epage=933&rft.pages=929-933&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2024.3379006&rft_dat=%3Cproquest_RIE%3E3031398278%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031398278&rft_id=info:pmid/&rft_ieee_id=10475428&rfr_iscdi=true |