RF-Based Drone Detection Enhancement via a Generalized Denoising and Interference-Removal Framework

Radio frequency-based (RF-based) detection methods are currently the main means of countering drones. However, these prevalent approaches frequently exhibit deficiencies in effectively addressing noise and interference, making them potentially unsuitable for application in realistic urban environmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2024, Vol.31, p.929-933
Hauptverfasser: Wang, Ziqi, Cao, Zihan, Xie, Julan, Zhang, Wei, He, Zishu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 933
container_issue
container_start_page 929
container_title IEEE signal processing letters
container_volume 31
creator Wang, Ziqi
Cao, Zihan
Xie, Julan
Zhang, Wei
He, Zishu
description Radio frequency-based (RF-based) detection methods are currently the main means of countering drones. However, these prevalent approaches frequently exhibit deficiencies in effectively addressing noise and interference, making them potentially unsuitable for application in realistic urban environments. This letter proposes a generalized RF signal-enhanced framework that explicitly addresses noise and interference. We decompose the RF signal into three components and uniformly integrate them into the proposed framework for decomposition. To accomplish this, three innovative loss functions and two appropriate neural networks are devised. To validate our framework, we create a real-world drone RF dataset sampled from urban surroundings, faithfully representing drone RF signals in real-world scenarios. Experimental results demonstrate that our framework exhibits satisfactory denoising and interference-removal performance, significantly improving the accuracy of multiple detection methods.
doi_str_mv 10.1109/LSP.2024.3379006
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2024_3379006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10475428</ieee_id><sourcerecordid>3031398278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-aeef874c8e3957162f7161634f3f4baed1868076f85aefdf31cb78ca8ec1bfd83</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk45x0nsjNAvKlUCFZgt1zlDSmMXOy2CX0-qdmC594bnvZMeQq4ZDBiD8m7-8jxIIc0GnIsSoDghPZbnMkl5wU67HQQkZQnynFzEuAIAyWTeI2YxSR50xIqOgndIR9iiaWvv6Nh9aGewQdfSXa2pplN0GPS6_t3T6Hwda_dOtavozLUYLAbsCskCG7_TazoJusFvHz4vyZnV64hXx-yTt8n4dfiYzJ-ms-H9PDFplreJRrRSZEYiL3PBitR2gxU8s9xmS40Vk4UEUViZa7SV5cwshTRaomFLW0neJ7eHu5vgv7YYW7Xy2-C6l4oDZ7yUqdhTcKBM8DEGtGoT6kaHH8VA7VWqTqXaq1RHlV3l5lCpEfEfnok8SyX_AwTrcHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031398278</pqid></control><display><type>article</type><title>RF-Based Drone Detection Enhancement via a Generalized Denoising and Interference-Removal Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Ziqi ; Cao, Zihan ; Xie, Julan ; Zhang, Wei ; He, Zishu</creator><creatorcontrib>Wang, Ziqi ; Cao, Zihan ; Xie, Julan ; Zhang, Wei ; He, Zishu</creatorcontrib><description>Radio frequency-based (RF-based) detection methods are currently the main means of countering drones. However, these prevalent approaches frequently exhibit deficiencies in effectively addressing noise and interference, making them potentially unsuitable for application in realistic urban environments. This letter proposes a generalized RF signal-enhanced framework that explicitly addresses noise and interference. We decompose the RF signal into three components and uniformly integrate them into the proposed framework for decomposition. To accomplish this, three innovative loss functions and two appropriate neural networks are devised. To validate our framework, we create a real-world drone RF dataset sampled from urban surroundings, faithfully representing drone RF signals in real-world scenarios. Experimental results demonstrate that our framework exhibits satisfactory denoising and interference-removal performance, significantly improving the accuracy of multiple detection methods.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2024.3379006</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Decomposition ; Denoise ; drone detection ; Drones ; Feature extraction ; Interference ; interference-removal ; Neural networks ; Noise reduction ; Radio frequency ; radio frequency signal ; RF signals ; Time-frequency analysis ; Urban environments</subject><ispartof>IEEE signal processing letters, 2024, Vol.31, p.929-933</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-aeef874c8e3957162f7161634f3f4baed1868076f85aefdf31cb78ca8ec1bfd83</cites><orcidid>0000-0002-1369-7025 ; 0009-0001-4872-7335 ; 0000-0002-7532-2122 ; 0000-0003-4491-8414 ; 0000-0002-1218-9475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10475428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,4012,27906,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10475428$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Ziqi</creatorcontrib><creatorcontrib>Cao, Zihan</creatorcontrib><creatorcontrib>Xie, Julan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>He, Zishu</creatorcontrib><title>RF-Based Drone Detection Enhancement via a Generalized Denoising and Interference-Removal Framework</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Radio frequency-based (RF-based) detection methods are currently the main means of countering drones. However, these prevalent approaches frequently exhibit deficiencies in effectively addressing noise and interference, making them potentially unsuitable for application in realistic urban environments. This letter proposes a generalized RF signal-enhanced framework that explicitly addresses noise and interference. We decompose the RF signal into three components and uniformly integrate them into the proposed framework for decomposition. To accomplish this, three innovative loss functions and two appropriate neural networks are devised. To validate our framework, we create a real-world drone RF dataset sampled from urban surroundings, faithfully representing drone RF signals in real-world scenarios. Experimental results demonstrate that our framework exhibits satisfactory denoising and interference-removal performance, significantly improving the accuracy of multiple detection methods.</description><subject>Antenna arrays</subject><subject>Decomposition</subject><subject>Denoise</subject><subject>drone detection</subject><subject>Drones</subject><subject>Feature extraction</subject><subject>Interference</subject><subject>interference-removal</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Radio frequency</subject><subject>radio frequency signal</subject><subject>RF signals</subject><subject>Time-frequency analysis</subject><subject>Urban environments</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk45x0nsjNAvKlUCFZgt1zlDSmMXOy2CX0-qdmC594bnvZMeQq4ZDBiD8m7-8jxIIc0GnIsSoDghPZbnMkl5wU67HQQkZQnynFzEuAIAyWTeI2YxSR50xIqOgndIR9iiaWvv6Nh9aGewQdfSXa2pplN0GPS6_t3T6Hwda_dOtavozLUYLAbsCskCG7_TazoJusFvHz4vyZnV64hXx-yTt8n4dfiYzJ-ms-H9PDFplreJRrRSZEYiL3PBitR2gxU8s9xmS40Vk4UEUViZa7SV5cwshTRaomFLW0neJ7eHu5vgv7YYW7Xy2-C6l4oDZ7yUqdhTcKBM8DEGtGoT6kaHH8VA7VWqTqXaq1RHlV3l5lCpEfEfnok8SyX_AwTrcHY</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Ziqi</creator><creator>Cao, Zihan</creator><creator>Xie, Julan</creator><creator>Zhang, Wei</creator><creator>He, Zishu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1369-7025</orcidid><orcidid>https://orcid.org/0009-0001-4872-7335</orcidid><orcidid>https://orcid.org/0000-0002-7532-2122</orcidid><orcidid>https://orcid.org/0000-0003-4491-8414</orcidid><orcidid>https://orcid.org/0000-0002-1218-9475</orcidid></search><sort><creationdate>2024</creationdate><title>RF-Based Drone Detection Enhancement via a Generalized Denoising and Interference-Removal Framework</title><author>Wang, Ziqi ; Cao, Zihan ; Xie, Julan ; Zhang, Wei ; He, Zishu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-aeef874c8e3957162f7161634f3f4baed1868076f85aefdf31cb78ca8ec1bfd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antenna arrays</topic><topic>Decomposition</topic><topic>Denoise</topic><topic>drone detection</topic><topic>Drones</topic><topic>Feature extraction</topic><topic>Interference</topic><topic>interference-removal</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Radio frequency</topic><topic>radio frequency signal</topic><topic>RF signals</topic><topic>Time-frequency analysis</topic><topic>Urban environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ziqi</creatorcontrib><creatorcontrib>Cao, Zihan</creatorcontrib><creatorcontrib>Xie, Julan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>He, Zishu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Ziqi</au><au>Cao, Zihan</au><au>Xie, Julan</au><au>Zhang, Wei</au><au>He, Zishu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RF-Based Drone Detection Enhancement via a Generalized Denoising and Interference-Removal Framework</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2024</date><risdate>2024</risdate><volume>31</volume><spage>929</spage><epage>933</epage><pages>929-933</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Radio frequency-based (RF-based) detection methods are currently the main means of countering drones. However, these prevalent approaches frequently exhibit deficiencies in effectively addressing noise and interference, making them potentially unsuitable for application in realistic urban environments. This letter proposes a generalized RF signal-enhanced framework that explicitly addresses noise and interference. We decompose the RF signal into three components and uniformly integrate them into the proposed framework for decomposition. To accomplish this, three innovative loss functions and two appropriate neural networks are devised. To validate our framework, we create a real-world drone RF dataset sampled from urban surroundings, faithfully representing drone RF signals in real-world scenarios. Experimental results demonstrate that our framework exhibits satisfactory denoising and interference-removal performance, significantly improving the accuracy of multiple detection methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2024.3379006</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1369-7025</orcidid><orcidid>https://orcid.org/0009-0001-4872-7335</orcidid><orcidid>https://orcid.org/0000-0002-7532-2122</orcidid><orcidid>https://orcid.org/0000-0003-4491-8414</orcidid><orcidid>https://orcid.org/0000-0002-1218-9475</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2024, Vol.31, p.929-933
issn 1070-9908
1558-2361
language eng
recordid cdi_crossref_primary_10_1109_LSP_2024_3379006
source IEEE Electronic Library (IEL)
subjects Antenna arrays
Decomposition
Denoise
drone detection
Drones
Feature extraction
Interference
interference-removal
Neural networks
Noise reduction
Radio frequency
radio frequency signal
RF signals
Time-frequency analysis
Urban environments
title RF-Based Drone Detection Enhancement via a Generalized Denoising and Interference-Removal Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RF-Based%20Drone%20Detection%20Enhancement%20via%20a%20Generalized%20Denoising%20and%20Interference-Removal%20Framework&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Wang,%20Ziqi&rft.date=2024&rft.volume=31&rft.spage=929&rft.epage=933&rft.pages=929-933&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2024.3379006&rft_dat=%3Cproquest_RIE%3E3031398278%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031398278&rft_id=info:pmid/&rft_ieee_id=10475428&rfr_iscdi=true