Sum-Path-Gain Maximization for IRS-Aided MIMO Communication System via Riemannian Gradient Descent Network
Intelligent reflecting surface (IRS) is a key technique for enhancing the performance of wireless communications. In this letter, we focus on the sum-path-gain maximization (SPGM) problem in an IRS-aided MIMO communication system, which is non-convex due to the constant modulus constraint. The exist...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2024, Vol.31, p.51-55 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | |
container_start_page | 51 |
container_title | IEEE signal processing letters |
container_volume | 31 |
creator | Zhu, Gangyong Hu, Jinfeng Zhong, Kai Cheng, Xin Song, Ziyun |
description | Intelligent reflecting surface (IRS) is a key technique for enhancing the performance of wireless communications. In this letter, we focus on the sum-path-gain maximization (SPGM) problem in an IRS-aided MIMO communication system, which is non-convex due to the constant modulus constraint. The existing works mainly include the relaxation method with relaxation error and the non-relaxation methods with high complexity. Different from the existing methods, we notice that constant modulus constraint can naturally satisfy the Riemannian manifold, and the deep learning method has strong non-convex learning ability. By exploiting these characteristics, the Riemannian gradient descent network (RGD-Net) is proposed. In the proposed method, we first project the non-convex SPGM problem to the Riemannian manifold. Then, the Riemannian gradient descent iterations are unfolded as the network layers. Finally, the step sizes of each layer are learned in unsupervised manner to ensure converged performance. Compared with the existing methods, the proposed method achieves higher spectral efficiency with lower computational cost. |
doi_str_mv | 10.1109/LSP.2023.3340611 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2023_3340611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10347278</ieee_id><sourcerecordid>2911492029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-2f40cf4ef43e928b823f57ff8c5a75d75b977a0bb23ab206cd0746e3a2e7635b3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwMzBYYk7xRxzbY1WgVGpp1cBsOYktXIhT7AQov55U7cB033DufdIB4BqjEcZI3s3z1YggQkeUpijD-AQMMGMiITTDp_2NOEqkROIcXMS4QQgJLNgAbPKuTla6fUum2nm40D-udr-6dY2Htglwts6TsatMBRezxRJOmrruvCsPQL6Lranhl9Nw7UytvXfaw2nQlTO-hfcmlvt8Nu13E94vwZnVH9FcHXMIXh8fXiZPyXw5nU3G86QkkrQJsSkqbWpsSo0kohCEWsatFSXTnFWcFZJzjYqCUF0QlJUV4mlmqCaGZ5QVdAhuD7vb0Hx2JrZq03TB9y8VkRinstckewodqDI0MQZj1Ta4WoedwkjtjareqNobVUejfeXmUHHGmH84TTnhgv4ByXVxzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911492029</pqid></control><display><type>article</type><title>Sum-Path-Gain Maximization for IRS-Aided MIMO Communication System via Riemannian Gradient Descent Network</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Gangyong ; Hu, Jinfeng ; Zhong, Kai ; Cheng, Xin ; Song, Ziyun</creator><creatorcontrib>Zhu, Gangyong ; Hu, Jinfeng ; Zhong, Kai ; Cheng, Xin ; Song, Ziyun</creatorcontrib><description>Intelligent reflecting surface (IRS) is a key technique for enhancing the performance of wireless communications. In this letter, we focus on the sum-path-gain maximization (SPGM) problem in an IRS-aided MIMO communication system, which is non-convex due to the constant modulus constraint. The existing works mainly include the relaxation method with relaxation error and the non-relaxation methods with high complexity. Different from the existing methods, we notice that constant modulus constraint can naturally satisfy the Riemannian manifold, and the deep learning method has strong non-convex learning ability. By exploiting these characteristics, the Riemannian gradient descent network (RGD-Net) is proposed. In the proposed method, we first project the non-convex SPGM problem to the Riemannian manifold. Then, the Riemannian gradient descent iterations are unfolded as the network layers. Finally, the step sizes of each layer are learned in unsupervised manner to ensure converged performance. Compared with the existing methods, the proposed method achieves higher spectral efficiency with lower computational cost.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2023.3340611</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Communications systems ; Deep learning ; Intelligent reflecting surface ; Manifolds ; Maximization ; MIMO communication ; MIMO system ; Optimization ; Receivers ; Reflection coefficient ; Relaxation method (mathematics) ; Riemann manifold ; Riemannian Gradient Descent Network (RGD-Net) ; Spectral efficiency ; sum-path-gain maximization (SPGM) ; Transmitters ; Wireless communications</subject><ispartof>IEEE signal processing letters, 2024, Vol.31, p.51-55</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-2f40cf4ef43e928b823f57ff8c5a75d75b977a0bb23ab206cd0746e3a2e7635b3</citedby><cites>FETCH-LOGICAL-c292t-2f40cf4ef43e928b823f57ff8c5a75d75b977a0bb23ab206cd0746e3a2e7635b3</cites><orcidid>0009-0002-6657-7200 ; 0000-0002-9480-5242 ; 0000-0001-5078-4665 ; 0009-0005-8046-1732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10347278$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10347278$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Gangyong</creatorcontrib><creatorcontrib>Hu, Jinfeng</creatorcontrib><creatorcontrib>Zhong, Kai</creatorcontrib><creatorcontrib>Cheng, Xin</creatorcontrib><creatorcontrib>Song, Ziyun</creatorcontrib><title>Sum-Path-Gain Maximization for IRS-Aided MIMO Communication System via Riemannian Gradient Descent Network</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Intelligent reflecting surface (IRS) is a key technique for enhancing the performance of wireless communications. In this letter, we focus on the sum-path-gain maximization (SPGM) problem in an IRS-aided MIMO communication system, which is non-convex due to the constant modulus constraint. The existing works mainly include the relaxation method with relaxation error and the non-relaxation methods with high complexity. Different from the existing methods, we notice that constant modulus constraint can naturally satisfy the Riemannian manifold, and the deep learning method has strong non-convex learning ability. By exploiting these characteristics, the Riemannian gradient descent network (RGD-Net) is proposed. In the proposed method, we first project the non-convex SPGM problem to the Riemannian manifold. Then, the Riemannian gradient descent iterations are unfolded as the network layers. Finally, the step sizes of each layer are learned in unsupervised manner to ensure converged performance. Compared with the existing methods, the proposed method achieves higher spectral efficiency with lower computational cost.</description><subject>Communications systems</subject><subject>Deep learning</subject><subject>Intelligent reflecting surface</subject><subject>Manifolds</subject><subject>Maximization</subject><subject>MIMO communication</subject><subject>MIMO system</subject><subject>Optimization</subject><subject>Receivers</subject><subject>Reflection coefficient</subject><subject>Relaxation method (mathematics)</subject><subject>Riemann manifold</subject><subject>Riemannian Gradient Descent Network (RGD-Net)</subject><subject>Spectral efficiency</subject><subject>sum-path-gain maximization (SPGM)</subject><subject>Transmitters</subject><subject>Wireless communications</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EEqWwMzBYYk7xRxzbY1WgVGpp1cBsOYktXIhT7AQov55U7cB033DufdIB4BqjEcZI3s3z1YggQkeUpijD-AQMMGMiITTDp_2NOEqkROIcXMS4QQgJLNgAbPKuTla6fUum2nm40D-udr-6dY2Htglwts6TsatMBRezxRJOmrruvCsPQL6Lranhl9Nw7UytvXfaw2nQlTO-hfcmlvt8Nu13E94vwZnVH9FcHXMIXh8fXiZPyXw5nU3G86QkkrQJsSkqbWpsSo0kohCEWsatFSXTnFWcFZJzjYqCUF0QlJUV4mlmqCaGZ5QVdAhuD7vb0Hx2JrZq03TB9y8VkRinstckewodqDI0MQZj1Ta4WoedwkjtjareqNobVUejfeXmUHHGmH84TTnhgv4ByXVxzA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhu, Gangyong</creator><creator>Hu, Jinfeng</creator><creator>Zhong, Kai</creator><creator>Cheng, Xin</creator><creator>Song, Ziyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0002-6657-7200</orcidid><orcidid>https://orcid.org/0000-0002-9480-5242</orcidid><orcidid>https://orcid.org/0000-0001-5078-4665</orcidid><orcidid>https://orcid.org/0009-0005-8046-1732</orcidid></search><sort><creationdate>2024</creationdate><title>Sum-Path-Gain Maximization for IRS-Aided MIMO Communication System via Riemannian Gradient Descent Network</title><author>Zhu, Gangyong ; Hu, Jinfeng ; Zhong, Kai ; Cheng, Xin ; Song, Ziyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-2f40cf4ef43e928b823f57ff8c5a75d75b977a0bb23ab206cd0746e3a2e7635b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Communications systems</topic><topic>Deep learning</topic><topic>Intelligent reflecting surface</topic><topic>Manifolds</topic><topic>Maximization</topic><topic>MIMO communication</topic><topic>MIMO system</topic><topic>Optimization</topic><topic>Receivers</topic><topic>Reflection coefficient</topic><topic>Relaxation method (mathematics)</topic><topic>Riemann manifold</topic><topic>Riemannian Gradient Descent Network (RGD-Net)</topic><topic>Spectral efficiency</topic><topic>sum-path-gain maximization (SPGM)</topic><topic>Transmitters</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Gangyong</creatorcontrib><creatorcontrib>Hu, Jinfeng</creatorcontrib><creatorcontrib>Zhong, Kai</creatorcontrib><creatorcontrib>Cheng, Xin</creatorcontrib><creatorcontrib>Song, Ziyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Gangyong</au><au>Hu, Jinfeng</au><au>Zhong, Kai</au><au>Cheng, Xin</au><au>Song, Ziyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sum-Path-Gain Maximization for IRS-Aided MIMO Communication System via Riemannian Gradient Descent Network</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2024</date><risdate>2024</risdate><volume>31</volume><spage>51</spage><epage>55</epage><pages>51-55</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Intelligent reflecting surface (IRS) is a key technique for enhancing the performance of wireless communications. In this letter, we focus on the sum-path-gain maximization (SPGM) problem in an IRS-aided MIMO communication system, which is non-convex due to the constant modulus constraint. The existing works mainly include the relaxation method with relaxation error and the non-relaxation methods with high complexity. Different from the existing methods, we notice that constant modulus constraint can naturally satisfy the Riemannian manifold, and the deep learning method has strong non-convex learning ability. By exploiting these characteristics, the Riemannian gradient descent network (RGD-Net) is proposed. In the proposed method, we first project the non-convex SPGM problem to the Riemannian manifold. Then, the Riemannian gradient descent iterations are unfolded as the network layers. Finally, the step sizes of each layer are learned in unsupervised manner to ensure converged performance. Compared with the existing methods, the proposed method achieves higher spectral efficiency with lower computational cost.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2023.3340611</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0002-6657-7200</orcidid><orcidid>https://orcid.org/0000-0002-9480-5242</orcidid><orcidid>https://orcid.org/0000-0001-5078-4665</orcidid><orcidid>https://orcid.org/0009-0005-8046-1732</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2024, Vol.31, p.51-55 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LSP_2023_3340611 |
source | IEEE Electronic Library (IEL) |
subjects | Communications systems Deep learning Intelligent reflecting surface Manifolds Maximization MIMO communication MIMO system Optimization Receivers Reflection coefficient Relaxation method (mathematics) Riemann manifold Riemannian Gradient Descent Network (RGD-Net) Spectral efficiency sum-path-gain maximization (SPGM) Transmitters Wireless communications |
title | Sum-Path-Gain Maximization for IRS-Aided MIMO Communication System via Riemannian Gradient Descent Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sum-Path-Gain%20Maximization%20for%20IRS-Aided%20MIMO%20Communication%20System%20via%20Riemannian%20Gradient%20Descent%20Network&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Zhu,%20Gangyong&rft.date=2024&rft.volume=31&rft.spage=51&rft.epage=55&rft.pages=51-55&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2023.3340611&rft_dat=%3Cproquest_RIE%3E2911492029%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911492029&rft_id=info:pmid/&rft_ieee_id=10347278&rfr_iscdi=true |