Sum-Path-Gain Maximization for IRS-Aided MIMO Communication System via Riemannian Gradient Descent Network

Intelligent reflecting surface (IRS) is a key technique for enhancing the performance of wireless communications. In this letter, we focus on the sum-path-gain maximization (SPGM) problem in an IRS-aided MIMO communication system, which is non-convex due to the constant modulus constraint. The exist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2024, Vol.31, p.51-55
Hauptverfasser: Zhu, Gangyong, Hu, Jinfeng, Zhong, Kai, Cheng, Xin, Song, Ziyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue
container_start_page 51
container_title IEEE signal processing letters
container_volume 31
creator Zhu, Gangyong
Hu, Jinfeng
Zhong, Kai
Cheng, Xin
Song, Ziyun
description Intelligent reflecting surface (IRS) is a key technique for enhancing the performance of wireless communications. In this letter, we focus on the sum-path-gain maximization (SPGM) problem in an IRS-aided MIMO communication system, which is non-convex due to the constant modulus constraint. The existing works mainly include the relaxation method with relaxation error and the non-relaxation methods with high complexity. Different from the existing methods, we notice that constant modulus constraint can naturally satisfy the Riemannian manifold, and the deep learning method has strong non-convex learning ability. By exploiting these characteristics, the Riemannian gradient descent network (RGD-Net) is proposed. In the proposed method, we first project the non-convex SPGM problem to the Riemannian manifold. Then, the Riemannian gradient descent iterations are unfolded as the network layers. Finally, the step sizes of each layer are learned in unsupervised manner to ensure converged performance. Compared with the existing methods, the proposed method achieves higher spectral efficiency with lower computational cost.
doi_str_mv 10.1109/LSP.2023.3340611
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2023_3340611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10347278</ieee_id><sourcerecordid>2911492029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-2f40cf4ef43e928b823f57ff8c5a75d75b977a0bb23ab206cd0746e3a2e7635b3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwMzBYYk7xRxzbY1WgVGpp1cBsOYktXIhT7AQov55U7cB033DufdIB4BqjEcZI3s3z1YggQkeUpijD-AQMMGMiITTDp_2NOEqkROIcXMS4QQgJLNgAbPKuTla6fUum2nm40D-udr-6dY2Htglwts6TsatMBRezxRJOmrruvCsPQL6Lranhl9Nw7UytvXfaw2nQlTO-hfcmlvt8Nu13E94vwZnVH9FcHXMIXh8fXiZPyXw5nU3G86QkkrQJsSkqbWpsSo0kohCEWsatFSXTnFWcFZJzjYqCUF0QlJUV4mlmqCaGZ5QVdAhuD7vb0Hx2JrZq03TB9y8VkRinstckewodqDI0MQZj1Ta4WoedwkjtjareqNobVUejfeXmUHHGmH84TTnhgv4ByXVxzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911492029</pqid></control><display><type>article</type><title>Sum-Path-Gain Maximization for IRS-Aided MIMO Communication System via Riemannian Gradient Descent Network</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Gangyong ; Hu, Jinfeng ; Zhong, Kai ; Cheng, Xin ; Song, Ziyun</creator><creatorcontrib>Zhu, Gangyong ; Hu, Jinfeng ; Zhong, Kai ; Cheng, Xin ; Song, Ziyun</creatorcontrib><description>Intelligent reflecting surface (IRS) is a key technique for enhancing the performance of wireless communications. In this letter, we focus on the sum-path-gain maximization (SPGM) problem in an IRS-aided MIMO communication system, which is non-convex due to the constant modulus constraint. The existing works mainly include the relaxation method with relaxation error and the non-relaxation methods with high complexity. Different from the existing methods, we notice that constant modulus constraint can naturally satisfy the Riemannian manifold, and the deep learning method has strong non-convex learning ability. By exploiting these characteristics, the Riemannian gradient descent network (RGD-Net) is proposed. In the proposed method, we first project the non-convex SPGM problem to the Riemannian manifold. Then, the Riemannian gradient descent iterations are unfolded as the network layers. Finally, the step sizes of each layer are learned in unsupervised manner to ensure converged performance. Compared with the existing methods, the proposed method achieves higher spectral efficiency with lower computational cost.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2023.3340611</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Communications systems ; Deep learning ; Intelligent reflecting surface ; Manifolds ; Maximization ; MIMO communication ; MIMO system ; Optimization ; Receivers ; Reflection coefficient ; Relaxation method (mathematics) ; Riemann manifold ; Riemannian Gradient Descent Network (RGD-Net) ; Spectral efficiency ; sum-path-gain maximization (SPGM) ; Transmitters ; Wireless communications</subject><ispartof>IEEE signal processing letters, 2024, Vol.31, p.51-55</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-2f40cf4ef43e928b823f57ff8c5a75d75b977a0bb23ab206cd0746e3a2e7635b3</citedby><cites>FETCH-LOGICAL-c292t-2f40cf4ef43e928b823f57ff8c5a75d75b977a0bb23ab206cd0746e3a2e7635b3</cites><orcidid>0009-0002-6657-7200 ; 0000-0002-9480-5242 ; 0000-0001-5078-4665 ; 0009-0005-8046-1732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10347278$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10347278$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Gangyong</creatorcontrib><creatorcontrib>Hu, Jinfeng</creatorcontrib><creatorcontrib>Zhong, Kai</creatorcontrib><creatorcontrib>Cheng, Xin</creatorcontrib><creatorcontrib>Song, Ziyun</creatorcontrib><title>Sum-Path-Gain Maximization for IRS-Aided MIMO Communication System via Riemannian Gradient Descent Network</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Intelligent reflecting surface (IRS) is a key technique for enhancing the performance of wireless communications. In this letter, we focus on the sum-path-gain maximization (SPGM) problem in an IRS-aided MIMO communication system, which is non-convex due to the constant modulus constraint. The existing works mainly include the relaxation method with relaxation error and the non-relaxation methods with high complexity. Different from the existing methods, we notice that constant modulus constraint can naturally satisfy the Riemannian manifold, and the deep learning method has strong non-convex learning ability. By exploiting these characteristics, the Riemannian gradient descent network (RGD-Net) is proposed. In the proposed method, we first project the non-convex SPGM problem to the Riemannian manifold. Then, the Riemannian gradient descent iterations are unfolded as the network layers. Finally, the step sizes of each layer are learned in unsupervised manner to ensure converged performance. Compared with the existing methods, the proposed method achieves higher spectral efficiency with lower computational cost.</description><subject>Communications systems</subject><subject>Deep learning</subject><subject>Intelligent reflecting surface</subject><subject>Manifolds</subject><subject>Maximization</subject><subject>MIMO communication</subject><subject>MIMO system</subject><subject>Optimization</subject><subject>Receivers</subject><subject>Reflection coefficient</subject><subject>Relaxation method (mathematics)</subject><subject>Riemann manifold</subject><subject>Riemannian Gradient Descent Network (RGD-Net)</subject><subject>Spectral efficiency</subject><subject>sum-path-gain maximization (SPGM)</subject><subject>Transmitters</subject><subject>Wireless communications</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EEqWwMzBYYk7xRxzbY1WgVGpp1cBsOYktXIhT7AQov55U7cB033DufdIB4BqjEcZI3s3z1YggQkeUpijD-AQMMGMiITTDp_2NOEqkROIcXMS4QQgJLNgAbPKuTla6fUum2nm40D-udr-6dY2Htglwts6TsatMBRezxRJOmrruvCsPQL6Lranhl9Nw7UytvXfaw2nQlTO-hfcmlvt8Nu13E94vwZnVH9FcHXMIXh8fXiZPyXw5nU3G86QkkrQJsSkqbWpsSo0kohCEWsatFSXTnFWcFZJzjYqCUF0QlJUV4mlmqCaGZ5QVdAhuD7vb0Hx2JrZq03TB9y8VkRinstckewodqDI0MQZj1Ta4WoedwkjtjareqNobVUejfeXmUHHGmH84TTnhgv4ByXVxzA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhu, Gangyong</creator><creator>Hu, Jinfeng</creator><creator>Zhong, Kai</creator><creator>Cheng, Xin</creator><creator>Song, Ziyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0002-6657-7200</orcidid><orcidid>https://orcid.org/0000-0002-9480-5242</orcidid><orcidid>https://orcid.org/0000-0001-5078-4665</orcidid><orcidid>https://orcid.org/0009-0005-8046-1732</orcidid></search><sort><creationdate>2024</creationdate><title>Sum-Path-Gain Maximization for IRS-Aided MIMO Communication System via Riemannian Gradient Descent Network</title><author>Zhu, Gangyong ; Hu, Jinfeng ; Zhong, Kai ; Cheng, Xin ; Song, Ziyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-2f40cf4ef43e928b823f57ff8c5a75d75b977a0bb23ab206cd0746e3a2e7635b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Communications systems</topic><topic>Deep learning</topic><topic>Intelligent reflecting surface</topic><topic>Manifolds</topic><topic>Maximization</topic><topic>MIMO communication</topic><topic>MIMO system</topic><topic>Optimization</topic><topic>Receivers</topic><topic>Reflection coefficient</topic><topic>Relaxation method (mathematics)</topic><topic>Riemann manifold</topic><topic>Riemannian Gradient Descent Network (RGD-Net)</topic><topic>Spectral efficiency</topic><topic>sum-path-gain maximization (SPGM)</topic><topic>Transmitters</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Gangyong</creatorcontrib><creatorcontrib>Hu, Jinfeng</creatorcontrib><creatorcontrib>Zhong, Kai</creatorcontrib><creatorcontrib>Cheng, Xin</creatorcontrib><creatorcontrib>Song, Ziyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Gangyong</au><au>Hu, Jinfeng</au><au>Zhong, Kai</au><au>Cheng, Xin</au><au>Song, Ziyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sum-Path-Gain Maximization for IRS-Aided MIMO Communication System via Riemannian Gradient Descent Network</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2024</date><risdate>2024</risdate><volume>31</volume><spage>51</spage><epage>55</epage><pages>51-55</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Intelligent reflecting surface (IRS) is a key technique for enhancing the performance of wireless communications. In this letter, we focus on the sum-path-gain maximization (SPGM) problem in an IRS-aided MIMO communication system, which is non-convex due to the constant modulus constraint. The existing works mainly include the relaxation method with relaxation error and the non-relaxation methods with high complexity. Different from the existing methods, we notice that constant modulus constraint can naturally satisfy the Riemannian manifold, and the deep learning method has strong non-convex learning ability. By exploiting these characteristics, the Riemannian gradient descent network (RGD-Net) is proposed. In the proposed method, we first project the non-convex SPGM problem to the Riemannian manifold. Then, the Riemannian gradient descent iterations are unfolded as the network layers. Finally, the step sizes of each layer are learned in unsupervised manner to ensure converged performance. Compared with the existing methods, the proposed method achieves higher spectral efficiency with lower computational cost.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2023.3340611</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0002-6657-7200</orcidid><orcidid>https://orcid.org/0000-0002-9480-5242</orcidid><orcidid>https://orcid.org/0000-0001-5078-4665</orcidid><orcidid>https://orcid.org/0009-0005-8046-1732</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2024, Vol.31, p.51-55
issn 1070-9908
1558-2361
language eng
recordid cdi_crossref_primary_10_1109_LSP_2023_3340611
source IEEE Electronic Library (IEL)
subjects Communications systems
Deep learning
Intelligent reflecting surface
Manifolds
Maximization
MIMO communication
MIMO system
Optimization
Receivers
Reflection coefficient
Relaxation method (mathematics)
Riemann manifold
Riemannian Gradient Descent Network (RGD-Net)
Spectral efficiency
sum-path-gain maximization (SPGM)
Transmitters
Wireless communications
title Sum-Path-Gain Maximization for IRS-Aided MIMO Communication System via Riemannian Gradient Descent Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sum-Path-Gain%20Maximization%20for%20IRS-Aided%20MIMO%20Communication%20System%20via%20Riemannian%20Gradient%20Descent%20Network&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Zhu,%20Gangyong&rft.date=2024&rft.volume=31&rft.spage=51&rft.epage=55&rft.pages=51-55&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2023.3340611&rft_dat=%3Cproquest_RIE%3E2911492029%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911492029&rft_id=info:pmid/&rft_ieee_id=10347278&rfr_iscdi=true