Adv-Depth: Self-Supervised Monocular Depth Estimation With an Adversarial Loss
Loss function plays a key role in self-supervised monocular depth estimation methods. Current reprojection loss functions are hand-designed and mainly focus on local patch similarity but overlook the global distribution differences between a synthetic image and a target image. In this paper, we leve...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2021, Vol.28, p.638-642 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 642 |
---|---|
container_issue | |
container_start_page | 638 |
container_title | IEEE signal processing letters |
container_volume | 28 |
creator | Li, Kunhong Fu, Zhiheng Wang, Hanyun Chen, Zonghao Guo, Yulan |
description | Loss function plays a key role in self-supervised monocular depth estimation methods. Current reprojection loss functions are hand-designed and mainly focus on local patch similarity but overlook the global distribution differences between a synthetic image and a target image. In this paper, we leverage global distribution differences by introducing an adversarial loss into the training stage of self-supervised depth estimation. Specifically, we formulate this task as a novel view synthesis problem. We use a depth estimation module and a pose estimation module to form a generator, and then design a discriminator to learn the global distribution differences between real and synthetic images. With the learned global distribution differences, the adversarial loss can be back-propagated to the depth estimation module to improve its performance. Experiments on the KITTI dataset have demonstrated the effectiveness of the adversarial loss. The adversarial loss is further combined with the reprojection loss to achieve the state-of-the-art performance on the KITTI dataset. |
doi_str_mv | 10.1109/LSP.2021.3065203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2021_3065203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9376591</ieee_id><sourcerecordid>2515863572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1f39a31c3044d7dda930e4eff9a6a31692ce8572558cf5ba9ed7163ce8da1f253</originalsourceid><addsrcrecordid>eNo9UE1Lw0AQXUTBWr0LXgKeE2d2u0nWW6n1A-IHVPG4rMkspsQk7iYF_71bWzzNzOO9mXmPsXOEBBHUVbF6SThwTASkkoM4YBOUMo-5SPEw9JBBrBTkx-zE-zUA5JjLCXuaV5v4hvrh8zpaUWPj1diT29Sequixa7tybIyL_gjR0g_1lxnqro3e6zCbNgpqct642jRR0Xl_yo6saTyd7euUvd0uXxf3cfF897CYF3HJFQ4xWqGMwFLAbFZlVWWUAJqRtcqkAU8VLymXGQ8GSis_jKIqw1QEsDJouRRTdrnb27vueyQ_6HU3ujac1FyizFMR1IEFO1bpwm-OrO5dcOB-NILepqZDanqbmt6nFiQXO0lNRP90JbJUKhS_7DJn9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515863572</pqid></control><display><type>article</type><title>Adv-Depth: Self-Supervised Monocular Depth Estimation With an Adversarial Loss</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Kunhong ; Fu, Zhiheng ; Wang, Hanyun ; Chen, Zonghao ; Guo, Yulan</creator><creatorcontrib>Li, Kunhong ; Fu, Zhiheng ; Wang, Hanyun ; Chen, Zonghao ; Guo, Yulan</creatorcontrib><description>Loss function plays a key role in self-supervised monocular depth estimation methods. Current reprojection loss functions are hand-designed and mainly focus on local patch similarity but overlook the global distribution differences between a synthetic image and a target image. In this paper, we leverage global distribution differences by introducing an adversarial loss into the training stage of self-supervised depth estimation. Specifically, we formulate this task as a novel view synthesis problem. We use a depth estimation module and a pose estimation module to form a generator, and then design a discriminator to learn the global distribution differences between real and synthetic images. With the learned global distribution differences, the adversarial loss can be back-propagated to the depth estimation module to improve its performance. Experiments on the KITTI dataset have demonstrated the effectiveness of the adversarial loss. The adversarial loss is further combined with the reprojection loss to achieve the state-of-the-art performance on the KITTI dataset.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2021.3065203</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Back propagation ; Datasets ; Estimation ; Feature extraction ; Gallium nitride ; Generative adversarial networks ; Generators ; Modules ; Monocular depth estimation ; self-supervised learning ; single-image depth prediction ; Target recognition ; Task analysis ; Training</subject><ispartof>IEEE signal processing letters, 2021, Vol.28, p.638-642</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1f39a31c3044d7dda930e4eff9a6a31692ce8572558cf5ba9ed7163ce8da1f253</citedby><cites>FETCH-LOGICAL-c291t-1f39a31c3044d7dda930e4eff9a6a31692ce8572558cf5ba9ed7163ce8da1f253</cites><orcidid>0000-0001-7051-841X ; 0000-0002-8320-4230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9376591$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9376591$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Kunhong</creatorcontrib><creatorcontrib>Fu, Zhiheng</creatorcontrib><creatorcontrib>Wang, Hanyun</creatorcontrib><creatorcontrib>Chen, Zonghao</creatorcontrib><creatorcontrib>Guo, Yulan</creatorcontrib><title>Adv-Depth: Self-Supervised Monocular Depth Estimation With an Adversarial Loss</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Loss function plays a key role in self-supervised monocular depth estimation methods. Current reprojection loss functions are hand-designed and mainly focus on local patch similarity but overlook the global distribution differences between a synthetic image and a target image. In this paper, we leverage global distribution differences by introducing an adversarial loss into the training stage of self-supervised depth estimation. Specifically, we formulate this task as a novel view synthesis problem. We use a depth estimation module and a pose estimation module to form a generator, and then design a discriminator to learn the global distribution differences between real and synthetic images. With the learned global distribution differences, the adversarial loss can be back-propagated to the depth estimation module to improve its performance. Experiments on the KITTI dataset have demonstrated the effectiveness of the adversarial loss. The adversarial loss is further combined with the reprojection loss to achieve the state-of-the-art performance on the KITTI dataset.</description><subject>Back propagation</subject><subject>Datasets</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Gallium nitride</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Modules</subject><subject>Monocular depth estimation</subject><subject>self-supervised learning</subject><subject>single-image depth prediction</subject><subject>Target recognition</subject><subject>Task analysis</subject><subject>Training</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1Lw0AQXUTBWr0LXgKeE2d2u0nWW6n1A-IHVPG4rMkspsQk7iYF_71bWzzNzOO9mXmPsXOEBBHUVbF6SThwTASkkoM4YBOUMo-5SPEw9JBBrBTkx-zE-zUA5JjLCXuaV5v4hvrh8zpaUWPj1diT29Sequixa7tybIyL_gjR0g_1lxnqro3e6zCbNgpqct642jRR0Xl_yo6saTyd7euUvd0uXxf3cfF897CYF3HJFQ4xWqGMwFLAbFZlVWWUAJqRtcqkAU8VLymXGQ8GSis_jKIqw1QEsDJouRRTdrnb27vueyQ_6HU3ujac1FyizFMR1IEFO1bpwm-OrO5dcOB-NILepqZDanqbmt6nFiQXO0lNRP90JbJUKhS_7DJn9Q</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Li, Kunhong</creator><creator>Fu, Zhiheng</creator><creator>Wang, Hanyun</creator><creator>Chen, Zonghao</creator><creator>Guo, Yulan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7051-841X</orcidid><orcidid>https://orcid.org/0000-0002-8320-4230</orcidid></search><sort><creationdate>2021</creationdate><title>Adv-Depth: Self-Supervised Monocular Depth Estimation With an Adversarial Loss</title><author>Li, Kunhong ; Fu, Zhiheng ; Wang, Hanyun ; Chen, Zonghao ; Guo, Yulan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1f39a31c3044d7dda930e4eff9a6a31692ce8572558cf5ba9ed7163ce8da1f253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Back propagation</topic><topic>Datasets</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Gallium nitride</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Modules</topic><topic>Monocular depth estimation</topic><topic>self-supervised learning</topic><topic>single-image depth prediction</topic><topic>Target recognition</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Kunhong</creatorcontrib><creatorcontrib>Fu, Zhiheng</creatorcontrib><creatorcontrib>Wang, Hanyun</creatorcontrib><creatorcontrib>Chen, Zonghao</creatorcontrib><creatorcontrib>Guo, Yulan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Kunhong</au><au>Fu, Zhiheng</au><au>Wang, Hanyun</au><au>Chen, Zonghao</au><au>Guo, Yulan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adv-Depth: Self-Supervised Monocular Depth Estimation With an Adversarial Loss</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2021</date><risdate>2021</risdate><volume>28</volume><spage>638</spage><epage>642</epage><pages>638-642</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Loss function plays a key role in self-supervised monocular depth estimation methods. Current reprojection loss functions are hand-designed and mainly focus on local patch similarity but overlook the global distribution differences between a synthetic image and a target image. In this paper, we leverage global distribution differences by introducing an adversarial loss into the training stage of self-supervised depth estimation. Specifically, we formulate this task as a novel view synthesis problem. We use a depth estimation module and a pose estimation module to form a generator, and then design a discriminator to learn the global distribution differences between real and synthetic images. With the learned global distribution differences, the adversarial loss can be back-propagated to the depth estimation module to improve its performance. Experiments on the KITTI dataset have demonstrated the effectiveness of the adversarial loss. The adversarial loss is further combined with the reprojection loss to achieve the state-of-the-art performance on the KITTI dataset.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2021.3065203</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7051-841X</orcidid><orcidid>https://orcid.org/0000-0002-8320-4230</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2021, Vol.28, p.638-642 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LSP_2021_3065203 |
source | IEEE Electronic Library (IEL) |
subjects | Back propagation Datasets Estimation Feature extraction Gallium nitride Generative adversarial networks Generators Modules Monocular depth estimation self-supervised learning single-image depth prediction Target recognition Task analysis Training |
title | Adv-Depth: Self-Supervised Monocular Depth Estimation With an Adversarial Loss |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adv-Depth:%20Self-Supervised%20Monocular%20Depth%20Estimation%20With%20an%20Adversarial%20Loss&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Li,%20Kunhong&rft.date=2021&rft.volume=28&rft.spage=638&rft.epage=642&rft.pages=638-642&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2021.3065203&rft_dat=%3Cproquest_RIE%3E2515863572%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515863572&rft_id=info:pmid/&rft_ieee_id=9376591&rfr_iscdi=true |