An Improved MSR-Based Data-Driven Detection Method Using Smoothing Pre-Processing

The mean spectral radius (MSR) which indicates data correlations is used as a test statistic in data-driven detection approaches based on random matrix theory (RMT). To further improve the detection performance of MSR-based detectors, a smoothing pre-processing method is proposed in this letter. By...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2021, Vol.28, p.444-448
Hauptverfasser: Yan, Yujia, Wu, Guangxin, Dong, Yang, Bai, Yechao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 448
container_issue
container_start_page 444
container_title IEEE signal processing letters
container_volume 28
creator Yan, Yujia
Wu, Guangxin
Dong, Yang
Bai, Yechao
description The mean spectral radius (MSR) which indicates data correlations is used as a test statistic in data-driven detection approaches based on random matrix theory (RMT). To further improve the detection performance of MSR-based detectors, a smoothing pre-processing method is proposed in this letter. By performing a smoothing pre-processing step on the original sampled data, the divergence between the distributions of the MSR under different hypotheses will be increased, effectively improving the detection probabilities. The AR(1) model is used to illustrate the effect of the smoothing pre-processing coefficients on detection performance. The optimum smoothing coefficients under different AR(1) coefficients and the change of detection probability under certain choices of smoothing coefficients are analyzed. It is verified that the proposed smoothing pre-processing method can effectively improve detection performance by the simulation of low-frequency oscillation detection in colored noise under low signal-to-noise ratio and experiments on floating small target detection in sea clutter using IPIX datasets.
doi_str_mv 10.1109/LSP.2021.3058008
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2021_3058008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9351599</ieee_id><sourcerecordid>2501331166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-df737b852c398e6766d8fd179f8d61d6b5a2544147bf4b1a21880a47120aa59e3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcFrzNzkiZNLufmx6DD6dx1SNvUdbhmJt3Af2_KhlfnhfOcDx6EboGMAIh6yJeLESUURoxwSYg8QwPgXGLKBJzHTDKClSLyEl2FsCGRAMkH6H3cJrPtzruDrZL58gM_mhDT1HQGT31zsG0ytZ0tu8a1ydx2a1clq9C0X8ly61y37tPCW7zwrrShb1yji9p8B3tzqkO0en76nLzi_O1lNhnnuKQKOlzVGcsKyWnJlLQiE6KSdQWZqmUloBIFN5SnKaRZUacFGApSEpNmQIkxXFk2RPfHvfH5n70Nnd64vW_jSU05AcYAhIgUOVKldyF4W-udb7bG_2oguhenozjdi9MncXHk7jjSWGv_ccU4cKXYH1AtZ6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501331166</pqid></control><display><type>article</type><title>An Improved MSR-Based Data-Driven Detection Method Using Smoothing Pre-Processing</title><source>IEEE Electronic Library (IEL)</source><creator>Yan, Yujia ; Wu, Guangxin ; Dong, Yang ; Bai, Yechao</creator><creatorcontrib>Yan, Yujia ; Wu, Guangxin ; Dong, Yang ; Bai, Yechao</creatorcontrib><description>The mean spectral radius (MSR) which indicates data correlations is used as a test statistic in data-driven detection approaches based on random matrix theory (RMT). To further improve the detection performance of MSR-based detectors, a smoothing pre-processing method is proposed in this letter. By performing a smoothing pre-processing step on the original sampled data, the divergence between the distributions of the MSR under different hypotheses will be increased, effectively improving the detection probabilities. The AR(1) model is used to illustrate the effect of the smoothing pre-processing coefficients on detection performance. The optimum smoothing coefficients under different AR(1) coefficients and the change of detection probability under certain choices of smoothing coefficients are analyzed. It is verified that the proposed smoothing pre-processing method can effectively improve detection performance by the simulation of low-frequency oscillation detection in colored noise under low signal-to-noise ratio and experiments on floating small target detection in sea clutter using IPIX datasets.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2021.3058008</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autoregressive processes ; Clutter ; Coefficients ; Correlation ; Data models ; Detectors ; Eigenvalues and eigenfunctions ; Matrix theory ; mean spectral radius ; Optimized production technology ; random matrix theory ; Signal to noise ratio ; Smoothing ; Smoothing methods ; Statistical analysis ; Target detection</subject><ispartof>IEEE signal processing letters, 2021, Vol.28, p.444-448</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-df737b852c398e6766d8fd179f8d61d6b5a2544147bf4b1a21880a47120aa59e3</citedby><cites>FETCH-LOGICAL-c291t-df737b852c398e6766d8fd179f8d61d6b5a2544147bf4b1a21880a47120aa59e3</cites><orcidid>0000-0001-5244-674X ; 0000-0003-0759-8722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9351599$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9351599$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, Yujia</creatorcontrib><creatorcontrib>Wu, Guangxin</creatorcontrib><creatorcontrib>Dong, Yang</creatorcontrib><creatorcontrib>Bai, Yechao</creatorcontrib><title>An Improved MSR-Based Data-Driven Detection Method Using Smoothing Pre-Processing</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>The mean spectral radius (MSR) which indicates data correlations is used as a test statistic in data-driven detection approaches based on random matrix theory (RMT). To further improve the detection performance of MSR-based detectors, a smoothing pre-processing method is proposed in this letter. By performing a smoothing pre-processing step on the original sampled data, the divergence between the distributions of the MSR under different hypotheses will be increased, effectively improving the detection probabilities. The AR(1) model is used to illustrate the effect of the smoothing pre-processing coefficients on detection performance. The optimum smoothing coefficients under different AR(1) coefficients and the change of detection probability under certain choices of smoothing coefficients are analyzed. It is verified that the proposed smoothing pre-processing method can effectively improve detection performance by the simulation of low-frequency oscillation detection in colored noise under low signal-to-noise ratio and experiments on floating small target detection in sea clutter using IPIX datasets.</description><subject>Autoregressive processes</subject><subject>Clutter</subject><subject>Coefficients</subject><subject>Correlation</subject><subject>Data models</subject><subject>Detectors</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Matrix theory</subject><subject>mean spectral radius</subject><subject>Optimized production technology</subject><subject>random matrix theory</subject><subject>Signal to noise ratio</subject><subject>Smoothing</subject><subject>Smoothing methods</subject><subject>Statistical analysis</subject><subject>Target detection</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKf3gjcFrzNzkiZNLufmx6DD6dx1SNvUdbhmJt3Af2_KhlfnhfOcDx6EboGMAIh6yJeLESUURoxwSYg8QwPgXGLKBJzHTDKClSLyEl2FsCGRAMkH6H3cJrPtzruDrZL58gM_mhDT1HQGT31zsG0ytZ0tu8a1ydx2a1clq9C0X8ly61y37tPCW7zwrrShb1yji9p8B3tzqkO0en76nLzi_O1lNhnnuKQKOlzVGcsKyWnJlLQiE6KSdQWZqmUloBIFN5SnKaRZUacFGApSEpNmQIkxXFk2RPfHvfH5n70Nnd64vW_jSU05AcYAhIgUOVKldyF4W-udb7bG_2oguhenozjdi9MncXHk7jjSWGv_ccU4cKXYH1AtZ6g</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yan, Yujia</creator><creator>Wu, Guangxin</creator><creator>Dong, Yang</creator><creator>Bai, Yechao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5244-674X</orcidid><orcidid>https://orcid.org/0000-0003-0759-8722</orcidid></search><sort><creationdate>2021</creationdate><title>An Improved MSR-Based Data-Driven Detection Method Using Smoothing Pre-Processing</title><author>Yan, Yujia ; Wu, Guangxin ; Dong, Yang ; Bai, Yechao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-df737b852c398e6766d8fd179f8d61d6b5a2544147bf4b1a21880a47120aa59e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autoregressive processes</topic><topic>Clutter</topic><topic>Coefficients</topic><topic>Correlation</topic><topic>Data models</topic><topic>Detectors</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Matrix theory</topic><topic>mean spectral radius</topic><topic>Optimized production technology</topic><topic>random matrix theory</topic><topic>Signal to noise ratio</topic><topic>Smoothing</topic><topic>Smoothing methods</topic><topic>Statistical analysis</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Yujia</creatorcontrib><creatorcontrib>Wu, Guangxin</creatorcontrib><creatorcontrib>Dong, Yang</creatorcontrib><creatorcontrib>Bai, Yechao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Yujia</au><au>Wu, Guangxin</au><au>Dong, Yang</au><au>Bai, Yechao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved MSR-Based Data-Driven Detection Method Using Smoothing Pre-Processing</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2021</date><risdate>2021</risdate><volume>28</volume><spage>444</spage><epage>448</epage><pages>444-448</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>The mean spectral radius (MSR) which indicates data correlations is used as a test statistic in data-driven detection approaches based on random matrix theory (RMT). To further improve the detection performance of MSR-based detectors, a smoothing pre-processing method is proposed in this letter. By performing a smoothing pre-processing step on the original sampled data, the divergence between the distributions of the MSR under different hypotheses will be increased, effectively improving the detection probabilities. The AR(1) model is used to illustrate the effect of the smoothing pre-processing coefficients on detection performance. The optimum smoothing coefficients under different AR(1) coefficients and the change of detection probability under certain choices of smoothing coefficients are analyzed. It is verified that the proposed smoothing pre-processing method can effectively improve detection performance by the simulation of low-frequency oscillation detection in colored noise under low signal-to-noise ratio and experiments on floating small target detection in sea clutter using IPIX datasets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2021.3058008</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5244-674X</orcidid><orcidid>https://orcid.org/0000-0003-0759-8722</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2021, Vol.28, p.444-448
issn 1070-9908
1558-2361
language eng
recordid cdi_crossref_primary_10_1109_LSP_2021_3058008
source IEEE Electronic Library (IEL)
subjects Autoregressive processes
Clutter
Coefficients
Correlation
Data models
Detectors
Eigenvalues and eigenfunctions
Matrix theory
mean spectral radius
Optimized production technology
random matrix theory
Signal to noise ratio
Smoothing
Smoothing methods
Statistical analysis
Target detection
title An Improved MSR-Based Data-Driven Detection Method Using Smoothing Pre-Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20MSR-Based%20Data-Driven%20Detection%20Method%20Using%20Smoothing%20Pre-Processing&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Yan,%20Yujia&rft.date=2021&rft.volume=28&rft.spage=444&rft.epage=448&rft.pages=444-448&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2021.3058008&rft_dat=%3Cproquest_RIE%3E2501331166%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501331166&rft_id=info:pmid/&rft_ieee_id=9351599&rfr_iscdi=true