Generalized Fuzzy Peer Group for Removal of Mixed Noise from Color Image
In this letter, a novel method has been proposed, which includes formulation of similarity function and a fuzzy-based method for filtering mixed noise. The similarity function is adaptive to local noise level and edge information, and it is used to detect similarity among pixels in a peer group. Bas...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2018-09, Vol.25 (9), p.1330-1334 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1334 |
---|---|
container_issue | 9 |
container_start_page | 1330 |
container_title | IEEE signal processing letters |
container_volume | 25 |
creator | Dev, Raghav Verma, Nishchal K. |
description | In this letter, a novel method has been proposed, which includes formulation of similarity function and a fuzzy-based method for filtering mixed noise. The similarity function is adaptive to local noise level and edge information, and it is used to detect similarity among pixels in a peer group. Based on the peer group, color image corrupted with mixed Gaussian and impulse noise is filtered. The novel method for filtering is an adaptive weighted average of different sized filters. The weights of different sized filters are adaptive to local noise and edge information. The proposed work has been compared with some state-of-the-art techniques. The results show proposed approach is better in preserving edge and color information than others. |
doi_str_mv | 10.1109/LSP.2018.2852140 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2018_2852140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8403306</ieee_id><sourcerecordid>2117114154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-46c038e01adc8ec48778ef40fe991602b1822113868464e6d7e51a1636fc31f73</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89aZJJvNHqXYD6ha_DiHdTuRLbtNzXaL7a83pcXTvDDPOwMPY7cIA0TIH2bv84EANANhUoEKzlgP09QkQmo8jxkySPIczCW7atslABg0aY9NxrSiUNTVnhZ81O33Oz4nCnwcfLfmzgf-Ro3fFjX3jj9Xv5F68VVL3AXf8KGvIzFtim-6ZheuqFu6Oc0--xw9fQwnyex1PB0-zpJS5LhJlC5BGgIsFqWhUpksM-QUOMpz1CC-0AiBKI02SivSi4xSLFBL7UqJLpN9dn-8uw7-p6N2Y5e-C6v40sZehqgwVZGCI1UG37aBnF2HqinCziLYgy8bfdmDL3vyFSt3x0pFRP-4iRsJWv4BG09kCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117114154</pqid></control><display><type>article</type><title>Generalized Fuzzy Peer Group for Removal of Mixed Noise from Color Image</title><source>IEEE Electronic Library (IEL)</source><creator>Dev, Raghav ; Verma, Nishchal K.</creator><creatorcontrib>Dev, Raghav ; Verma, Nishchal K.</creatorcontrib><description>In this letter, a novel method has been proposed, which includes formulation of similarity function and a fuzzy-based method for filtering mixed noise. The similarity function is adaptive to local noise level and edge information, and it is used to detect similarity among pixels in a peer group. Based on the peer group, color image corrupted with mixed Gaussian and impulse noise is filtered. The novel method for filtering is an adaptive weighted average of different sized filters. The weights of different sized filters are adaptive to local noise and edge information. The proposed work has been compared with some state-of-the-art techniques. The results show proposed approach is better in preserving edge and color information than others.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2018.2852140</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; AWGN ; Color ; Color image ; Filtration ; Image color analysis ; Image edge detection ; Microsoft Windows ; mixed noise ; Noise ; Noise level ; peer group ; Similarity ; Similarity measures</subject><ispartof>IEEE signal processing letters, 2018-09, Vol.25 (9), p.1330-1334</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-46c038e01adc8ec48778ef40fe991602b1822113868464e6d7e51a1636fc31f73</citedby><cites>FETCH-LOGICAL-c291t-46c038e01adc8ec48778ef40fe991602b1822113868464e6d7e51a1636fc31f73</cites><orcidid>0000-0001-5037-2396 ; 0000-0001-8752-5616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8403306$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8403306$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dev, Raghav</creatorcontrib><creatorcontrib>Verma, Nishchal K.</creatorcontrib><title>Generalized Fuzzy Peer Group for Removal of Mixed Noise from Color Image</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>In this letter, a novel method has been proposed, which includes formulation of similarity function and a fuzzy-based method for filtering mixed noise. The similarity function is adaptive to local noise level and edge information, and it is used to detect similarity among pixels in a peer group. Based on the peer group, color image corrupted with mixed Gaussian and impulse noise is filtered. The novel method for filtering is an adaptive weighted average of different sized filters. The weights of different sized filters are adaptive to local noise and edge information. The proposed work has been compared with some state-of-the-art techniques. The results show proposed approach is better in preserving edge and color information than others.</description><subject>Adaptive filters</subject><subject>AWGN</subject><subject>Color</subject><subject>Color image</subject><subject>Filtration</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Microsoft Windows</subject><subject>mixed noise</subject><subject>Noise</subject><subject>Noise level</subject><subject>peer group</subject><subject>Similarity</subject><subject>Similarity measures</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89aZJJvNHqXYD6ha_DiHdTuRLbtNzXaL7a83pcXTvDDPOwMPY7cIA0TIH2bv84EANANhUoEKzlgP09QkQmo8jxkySPIczCW7atslABg0aY9NxrSiUNTVnhZ81O33Oz4nCnwcfLfmzgf-Ro3fFjX3jj9Xv5F68VVL3AXf8KGvIzFtim-6ZheuqFu6Oc0--xw9fQwnyex1PB0-zpJS5LhJlC5BGgIsFqWhUpksM-QUOMpz1CC-0AiBKI02SivSi4xSLFBL7UqJLpN9dn-8uw7-p6N2Y5e-C6v40sZehqgwVZGCI1UG37aBnF2HqinCziLYgy8bfdmDL3vyFSt3x0pFRP-4iRsJWv4BG09kCA</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Dev, Raghav</creator><creator>Verma, Nishchal K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5037-2396</orcidid><orcidid>https://orcid.org/0000-0001-8752-5616</orcidid></search><sort><creationdate>20180901</creationdate><title>Generalized Fuzzy Peer Group for Removal of Mixed Noise from Color Image</title><author>Dev, Raghav ; Verma, Nishchal K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-46c038e01adc8ec48778ef40fe991602b1822113868464e6d7e51a1636fc31f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive filters</topic><topic>AWGN</topic><topic>Color</topic><topic>Color image</topic><topic>Filtration</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Microsoft Windows</topic><topic>mixed noise</topic><topic>Noise</topic><topic>Noise level</topic><topic>peer group</topic><topic>Similarity</topic><topic>Similarity measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dev, Raghav</creatorcontrib><creatorcontrib>Verma, Nishchal K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dev, Raghav</au><au>Verma, Nishchal K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Fuzzy Peer Group for Removal of Mixed Noise from Color Image</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>25</volume><issue>9</issue><spage>1330</spage><epage>1334</epage><pages>1330-1334</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>In this letter, a novel method has been proposed, which includes formulation of similarity function and a fuzzy-based method for filtering mixed noise. The similarity function is adaptive to local noise level and edge information, and it is used to detect similarity among pixels in a peer group. Based on the peer group, color image corrupted with mixed Gaussian and impulse noise is filtered. The novel method for filtering is an adaptive weighted average of different sized filters. The weights of different sized filters are adaptive to local noise and edge information. The proposed work has been compared with some state-of-the-art techniques. The results show proposed approach is better in preserving edge and color information than others.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2018.2852140</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5037-2396</orcidid><orcidid>https://orcid.org/0000-0001-8752-5616</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2018-09, Vol.25 (9), p.1330-1334 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LSP_2018_2852140 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive filters AWGN Color Color image Filtration Image color analysis Image edge detection Microsoft Windows mixed noise Noise Noise level peer group Similarity Similarity measures |
title | Generalized Fuzzy Peer Group for Removal of Mixed Noise from Color Image |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Fuzzy%20Peer%20Group%20for%20Removal%20of%20Mixed%20Noise%20from%20Color%20Image&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Dev,%20Raghav&rft.date=2018-09-01&rft.volume=25&rft.issue=9&rft.spage=1330&rft.epage=1334&rft.pages=1330-1334&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2018.2852140&rft_dat=%3Cproquest_RIE%3E2117114154%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117114154&rft_id=info:pmid/&rft_ieee_id=8403306&rfr_iscdi=true |