Generalized Fuzzy Peer Group for Removal of Mixed Noise from Color Image

In this letter, a novel method has been proposed, which includes formulation of similarity function and a fuzzy-based method for filtering mixed noise. The similarity function is adaptive to local noise level and edge information, and it is used to detect similarity among pixels in a peer group. Bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2018-09, Vol.25 (9), p.1330-1334
Hauptverfasser: Dev, Raghav, Verma, Nishchal K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1334
container_issue 9
container_start_page 1330
container_title IEEE signal processing letters
container_volume 25
creator Dev, Raghav
Verma, Nishchal K.
description In this letter, a novel method has been proposed, which includes formulation of similarity function and a fuzzy-based method for filtering mixed noise. The similarity function is adaptive to local noise level and edge information, and it is used to detect similarity among pixels in a peer group. Based on the peer group, color image corrupted with mixed Gaussian and impulse noise is filtered. The novel method for filtering is an adaptive weighted average of different sized filters. The weights of different sized filters are adaptive to local noise and edge information. The proposed work has been compared with some state-of-the-art techniques. The results show proposed approach is better in preserving edge and color information than others.
doi_str_mv 10.1109/LSP.2018.2852140
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2018_2852140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8403306</ieee_id><sourcerecordid>2117114154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-46c038e01adc8ec48778ef40fe991602b1822113868464e6d7e51a1636fc31f73</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89aZJJvNHqXYD6ha_DiHdTuRLbtNzXaL7a83pcXTvDDPOwMPY7cIA0TIH2bv84EANANhUoEKzlgP09QkQmo8jxkySPIczCW7atslABg0aY9NxrSiUNTVnhZ81O33Oz4nCnwcfLfmzgf-Ro3fFjX3jj9Xv5F68VVL3AXf8KGvIzFtim-6ZheuqFu6Oc0--xw9fQwnyex1PB0-zpJS5LhJlC5BGgIsFqWhUpksM-QUOMpz1CC-0AiBKI02SivSi4xSLFBL7UqJLpN9dn-8uw7-p6N2Y5e-C6v40sZehqgwVZGCI1UG37aBnF2HqinCziLYgy8bfdmDL3vyFSt3x0pFRP-4iRsJWv4BG09kCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117114154</pqid></control><display><type>article</type><title>Generalized Fuzzy Peer Group for Removal of Mixed Noise from Color Image</title><source>IEEE Electronic Library (IEL)</source><creator>Dev, Raghav ; Verma, Nishchal K.</creator><creatorcontrib>Dev, Raghav ; Verma, Nishchal K.</creatorcontrib><description>In this letter, a novel method has been proposed, which includes formulation of similarity function and a fuzzy-based method for filtering mixed noise. The similarity function is adaptive to local noise level and edge information, and it is used to detect similarity among pixels in a peer group. Based on the peer group, color image corrupted with mixed Gaussian and impulse noise is filtered. The novel method for filtering is an adaptive weighted average of different sized filters. The weights of different sized filters are adaptive to local noise and edge information. The proposed work has been compared with some state-of-the-art techniques. The results show proposed approach is better in preserving edge and color information than others.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2018.2852140</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; AWGN ; Color ; Color image ; Filtration ; Image color analysis ; Image edge detection ; Microsoft Windows ; mixed noise ; Noise ; Noise level ; peer group ; Similarity ; Similarity measures</subject><ispartof>IEEE signal processing letters, 2018-09, Vol.25 (9), p.1330-1334</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-46c038e01adc8ec48778ef40fe991602b1822113868464e6d7e51a1636fc31f73</citedby><cites>FETCH-LOGICAL-c291t-46c038e01adc8ec48778ef40fe991602b1822113868464e6d7e51a1636fc31f73</cites><orcidid>0000-0001-5037-2396 ; 0000-0001-8752-5616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8403306$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8403306$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dev, Raghav</creatorcontrib><creatorcontrib>Verma, Nishchal K.</creatorcontrib><title>Generalized Fuzzy Peer Group for Removal of Mixed Noise from Color Image</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>In this letter, a novel method has been proposed, which includes formulation of similarity function and a fuzzy-based method for filtering mixed noise. The similarity function is adaptive to local noise level and edge information, and it is used to detect similarity among pixels in a peer group. Based on the peer group, color image corrupted with mixed Gaussian and impulse noise is filtered. The novel method for filtering is an adaptive weighted average of different sized filters. The weights of different sized filters are adaptive to local noise and edge information. The proposed work has been compared with some state-of-the-art techniques. The results show proposed approach is better in preserving edge and color information than others.</description><subject>Adaptive filters</subject><subject>AWGN</subject><subject>Color</subject><subject>Color image</subject><subject>Filtration</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Microsoft Windows</subject><subject>mixed noise</subject><subject>Noise</subject><subject>Noise level</subject><subject>peer group</subject><subject>Similarity</subject><subject>Similarity measures</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89aZJJvNHqXYD6ha_DiHdTuRLbtNzXaL7a83pcXTvDDPOwMPY7cIA0TIH2bv84EANANhUoEKzlgP09QkQmo8jxkySPIczCW7atslABg0aY9NxrSiUNTVnhZ81O33Oz4nCnwcfLfmzgf-Ro3fFjX3jj9Xv5F68VVL3AXf8KGvIzFtim-6ZheuqFu6Oc0--xw9fQwnyex1PB0-zpJS5LhJlC5BGgIsFqWhUpksM-QUOMpz1CC-0AiBKI02SivSi4xSLFBL7UqJLpN9dn-8uw7-p6N2Y5e-C6v40sZehqgwVZGCI1UG37aBnF2HqinCziLYgy8bfdmDL3vyFSt3x0pFRP-4iRsJWv4BG09kCA</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Dev, Raghav</creator><creator>Verma, Nishchal K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5037-2396</orcidid><orcidid>https://orcid.org/0000-0001-8752-5616</orcidid></search><sort><creationdate>20180901</creationdate><title>Generalized Fuzzy Peer Group for Removal of Mixed Noise from Color Image</title><author>Dev, Raghav ; Verma, Nishchal K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-46c038e01adc8ec48778ef40fe991602b1822113868464e6d7e51a1636fc31f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive filters</topic><topic>AWGN</topic><topic>Color</topic><topic>Color image</topic><topic>Filtration</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Microsoft Windows</topic><topic>mixed noise</topic><topic>Noise</topic><topic>Noise level</topic><topic>peer group</topic><topic>Similarity</topic><topic>Similarity measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dev, Raghav</creatorcontrib><creatorcontrib>Verma, Nishchal K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dev, Raghav</au><au>Verma, Nishchal K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Fuzzy Peer Group for Removal of Mixed Noise from Color Image</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>25</volume><issue>9</issue><spage>1330</spage><epage>1334</epage><pages>1330-1334</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>In this letter, a novel method has been proposed, which includes formulation of similarity function and a fuzzy-based method for filtering mixed noise. The similarity function is adaptive to local noise level and edge information, and it is used to detect similarity among pixels in a peer group. Based on the peer group, color image corrupted with mixed Gaussian and impulse noise is filtered. The novel method for filtering is an adaptive weighted average of different sized filters. The weights of different sized filters are adaptive to local noise and edge information. The proposed work has been compared with some state-of-the-art techniques. The results show proposed approach is better in preserving edge and color information than others.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2018.2852140</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5037-2396</orcidid><orcidid>https://orcid.org/0000-0001-8752-5616</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2018-09, Vol.25 (9), p.1330-1334
issn 1070-9908
1558-2361
language eng
recordid cdi_crossref_primary_10_1109_LSP_2018_2852140
source IEEE Electronic Library (IEL)
subjects Adaptive filters
AWGN
Color
Color image
Filtration
Image color analysis
Image edge detection
Microsoft Windows
mixed noise
Noise
Noise level
peer group
Similarity
Similarity measures
title Generalized Fuzzy Peer Group for Removal of Mixed Noise from Color Image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Fuzzy%20Peer%20Group%20for%20Removal%20of%20Mixed%20Noise%20from%20Color%20Image&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Dev,%20Raghav&rft.date=2018-09-01&rft.volume=25&rft.issue=9&rft.spage=1330&rft.epage=1334&rft.pages=1330-1334&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2018.2852140&rft_dat=%3Cproquest_RIE%3E2117114154%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117114154&rft_id=info:pmid/&rft_ieee_id=8403306&rfr_iscdi=true