CFAR Knowledge-Aided Radar Detection With Heterogeneous Samples

In this letter, we consider the problem of constant false alarm rate (CFAR) detection in heterogeneous scenarios. We assume that the covariance matrices of the training samples are different from that of the cell under test and employ prior statistical knowledge to describe the degree of heterogenei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2017-05, Vol.24 (5), p.693-697
Hauptverfasser: Wang, Yikai, Xia, Wei, He, Zishu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue 5
container_start_page 693
container_title IEEE signal processing letters
container_volume 24
creator Wang, Yikai
Xia, Wei
He, Zishu
description In this letter, we consider the problem of constant false alarm rate (CFAR) detection in heterogeneous scenarios. We assume that the covariance matrices of the training samples are different from that of the cell under test and employ prior statistical knowledge to describe the degree of heterogeneity. We derive an approximate expression of the average signal-to-clutter-noise ratio loss of the adaptive detector constructed with the maximum likelihood estimate of the covariance matrix obtained by solving the fixed-point equation. We validate the CFAR property of the detector and derive the asymptotic expression of the probability of false alarm. Exploiting such prior knowledge can significantly reduce the adverse effects of the heterogeneous training samples. Simulations validate the proposed theoretical results.
doi_str_mv 10.1109/LSP.2017.2688386
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2017_2688386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7888508</ieee_id><sourcerecordid>10_1109_LSP_2017_2688386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-3ec4dd60b2143545d6fb7b1799b66101321e1c62085d0a7a6329b4b48140523e3</originalsourceid><addsrcrecordid>eNo9kEFLw0AUhBdRsFbvgpf8gdT3drO7LycJ1VoxoLSKx7DJvtRI25RsRPz3prR4mhmYmcMnxDXCBBHS23z5OpGAdiINkSJzIkaoNcVSGTwdPFiI0xToXFyE8AUAhKRH4m46yxbR87b9WbNfcZw1nn20cN510T33XPVNu40-mv4zmg-xa1e85fY7REu32a05XIqz2q0DXx11LN5nD2_TeZy_PD5NszyupFF9rLhKvDdQSkyUTrQ3dWlLtGlaGoOASiJjZSSQ9uCsM0qmZVImhAloqViNBRx-q64NoeO62HXNxnW_BUKxB1AMAIo9gOIIYJjcHCYNM__XLRFpIPUHGj1VCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CFAR Knowledge-Aided Radar Detection With Heterogeneous Samples</title><source>IEEE</source><creator>Wang, Yikai ; Xia, Wei ; He, Zishu</creator><creatorcontrib>Wang, Yikai ; Xia, Wei ; He, Zishu</creatorcontrib><description>In this letter, we consider the problem of constant false alarm rate (CFAR) detection in heterogeneous scenarios. We assume that the covariance matrices of the training samples are different from that of the cell under test and employ prior statistical knowledge to describe the degree of heterogeneity. We derive an approximate expression of the average signal-to-clutter-noise ratio loss of the adaptive detector constructed with the maximum likelihood estimate of the covariance matrix obtained by solving the fixed-point equation. We validate the CFAR property of the detector and derive the asymptotic expression of the probability of false alarm. Exploiting such prior knowledge can significantly reduce the adverse effects of the heterogeneous training samples. Simulations validate the proposed theoretical results.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2017.2688386</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asymptotic performance ; Clutter ; constant false alarm rate (CFAR) detection ; Covariance matrices ; Detectors ; heterogeneous clutter ; knowledge-aided radar detection ; Mathematical model ; Maximum likelihood estimation ; Radar detection ; Training</subject><ispartof>IEEE signal processing letters, 2017-05, Vol.24 (5), p.693-697</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-3ec4dd60b2143545d6fb7b1799b66101321e1c62085d0a7a6329b4b48140523e3</citedby><cites>FETCH-LOGICAL-c263t-3ec4dd60b2143545d6fb7b1799b66101321e1c62085d0a7a6329b4b48140523e3</cites><orcidid>0000-0002-6366-5080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7888508$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7888508$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yikai</creatorcontrib><creatorcontrib>Xia, Wei</creatorcontrib><creatorcontrib>He, Zishu</creatorcontrib><title>CFAR Knowledge-Aided Radar Detection With Heterogeneous Samples</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>In this letter, we consider the problem of constant false alarm rate (CFAR) detection in heterogeneous scenarios. We assume that the covariance matrices of the training samples are different from that of the cell under test and employ prior statistical knowledge to describe the degree of heterogeneity. We derive an approximate expression of the average signal-to-clutter-noise ratio loss of the adaptive detector constructed with the maximum likelihood estimate of the covariance matrix obtained by solving the fixed-point equation. We validate the CFAR property of the detector and derive the asymptotic expression of the probability of false alarm. Exploiting such prior knowledge can significantly reduce the adverse effects of the heterogeneous training samples. Simulations validate the proposed theoretical results.</description><subject>Asymptotic performance</subject><subject>Clutter</subject><subject>constant false alarm rate (CFAR) detection</subject><subject>Covariance matrices</subject><subject>Detectors</subject><subject>heterogeneous clutter</subject><subject>knowledge-aided radar detection</subject><subject>Mathematical model</subject><subject>Maximum likelihood estimation</subject><subject>Radar detection</subject><subject>Training</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AUhBdRsFbvgpf8gdT3drO7LycJ1VoxoLSKx7DJvtRI25RsRPz3prR4mhmYmcMnxDXCBBHS23z5OpGAdiINkSJzIkaoNcVSGTwdPFiI0xToXFyE8AUAhKRH4m46yxbR87b9WbNfcZw1nn20cN510T33XPVNu40-mv4zmg-xa1e85fY7REu32a05XIqz2q0DXx11LN5nD2_TeZy_PD5NszyupFF9rLhKvDdQSkyUTrQ3dWlLtGlaGoOASiJjZSSQ9uCsM0qmZVImhAloqViNBRx-q64NoeO62HXNxnW_BUKxB1AMAIo9gOIIYJjcHCYNM__XLRFpIPUHGj1VCw</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Wang, Yikai</creator><creator>Xia, Wei</creator><creator>He, Zishu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6366-5080</orcidid></search><sort><creationdate>201705</creationdate><title>CFAR Knowledge-Aided Radar Detection With Heterogeneous Samples</title><author>Wang, Yikai ; Xia, Wei ; He, Zishu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-3ec4dd60b2143545d6fb7b1799b66101321e1c62085d0a7a6329b4b48140523e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic performance</topic><topic>Clutter</topic><topic>constant false alarm rate (CFAR) detection</topic><topic>Covariance matrices</topic><topic>Detectors</topic><topic>heterogeneous clutter</topic><topic>knowledge-aided radar detection</topic><topic>Mathematical model</topic><topic>Maximum likelihood estimation</topic><topic>Radar detection</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yikai</creatorcontrib><creatorcontrib>Xia, Wei</creatorcontrib><creatorcontrib>He, Zishu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yikai</au><au>Xia, Wei</au><au>He, Zishu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFAR Knowledge-Aided Radar Detection With Heterogeneous Samples</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2017-05</date><risdate>2017</risdate><volume>24</volume><issue>5</issue><spage>693</spage><epage>697</epage><pages>693-697</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>In this letter, we consider the problem of constant false alarm rate (CFAR) detection in heterogeneous scenarios. We assume that the covariance matrices of the training samples are different from that of the cell under test and employ prior statistical knowledge to describe the degree of heterogeneity. We derive an approximate expression of the average signal-to-clutter-noise ratio loss of the adaptive detector constructed with the maximum likelihood estimate of the covariance matrix obtained by solving the fixed-point equation. We validate the CFAR property of the detector and derive the asymptotic expression of the probability of false alarm. Exploiting such prior knowledge can significantly reduce the adverse effects of the heterogeneous training samples. Simulations validate the proposed theoretical results.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2017.2688386</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6366-5080</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2017-05, Vol.24 (5), p.693-697
issn 1070-9908
1558-2361
language eng
recordid cdi_crossref_primary_10_1109_LSP_2017_2688386
source IEEE
subjects Asymptotic performance
Clutter
constant false alarm rate (CFAR) detection
Covariance matrices
Detectors
heterogeneous clutter
knowledge-aided radar detection
Mathematical model
Maximum likelihood estimation
Radar detection
Training
title CFAR Knowledge-Aided Radar Detection With Heterogeneous Samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFAR%20Knowledge-Aided%20Radar%20Detection%20With%20Heterogeneous%20Samples&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Wang,%20Yikai&rft.date=2017-05&rft.volume=24&rft.issue=5&rft.spage=693&rft.epage=697&rft.pages=693-697&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2017.2688386&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2017_2688386%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7888508&rfr_iscdi=true