sEMG Signal-Based Lower Limb Human Motion Detection Using a Top and Slope Feature Extraction Algorithm

This letter presents lower limb human motion detection using a surface electromyogram (sEMG) with a top and slope (TAS) feature extraction algorithm. Lower limb human motion detection using sEMG signal is generally divided into gait subphase detection, locomotion mode recognition, and mode change de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2017-07, Vol.24 (7), p.929-932
Hauptverfasser: Ryu, Jaehwan, Byeong-Hyeon Lee, Deok-Hwan Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 932
container_issue 7
container_start_page 929
container_title IEEE signal processing letters
container_volume 24
creator Ryu, Jaehwan
Byeong-Hyeon Lee
Deok-Hwan Kim
description This letter presents lower limb human motion detection using a surface electromyogram (sEMG) with a top and slope (TAS) feature extraction algorithm. Lower limb human motion detection using sEMG signal is generally divided into gait subphase detection, locomotion mode recognition, and mode change detection. Existing feature extraction algorithms using sEMG signal have several innate problems in recognizing lower limb human motion detection. With respect to time-domain features, their values may be analogous because two different gait subphases and locomotion mode may have similar muscle activity pattern. Therefore, it is not easy to select the proper feature set of sEMG signals. The TAS feature extraction algorithm reflects better timing characteristics of sEMG signals than the existing time-domain feature extraction algorithm. Therefore, it can provide high accuracy in lower limb human motion detection. Experimental results show that the average detection accuracy values of the proposed method in terms of the gait subphase detection, locomotion mode recognition, and mode change detection are increased by 8%, 5%, and 4% better than those of feature values of the Willison amplitude, respectively.
doi_str_mv 10.1109/LSP.2016.2636320
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2016_2636320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7776738</ieee_id><sourcerecordid>10_1109_LSP_2016_2636320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-4790b589161780295cfd624d4398e19eb552ca899b8c2fa64738ddce6f12fdb23</originalsourceid><addsrcrecordid>eNo9kEFPwjAYhhujiYjeTbz0Dwy_tmvXHhEBTUY0Ac5Lt33DmW0l7Yj67x1CPL3v4X3ew0PIPYMJY2Ae0_X7hANTE66EEhwuyIhJqSMuFLscOiQQGQP6mtyE8AkAmmk5IlWYr5Z0Xe8620RPNmBJU_eFnqZ1m9OXQ2s7unJ97Tr6jD0Wf20b6m5HLd24PbVdSdeN2yNdoO0PHun8u_f2NJw2O-fr_qO9JVeVbQLenXNMtov5ZvYSpW_L19k0jQrBTR_FiYFcasMUSzRwI4uqVDwuY2E0MoO5lLyw2phcF7yyKk6ELssCVcV4VeZcjAmcfgvvQvBYZXtft9b_ZAyyo6ds8JQdPWVnTwPycEJqRPyfJ0mihnPxC4GqY6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>sEMG Signal-Based Lower Limb Human Motion Detection Using a Top and Slope Feature Extraction Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Ryu, Jaehwan ; Byeong-Hyeon Lee ; Deok-Hwan Kim</creator><creatorcontrib>Ryu, Jaehwan ; Byeong-Hyeon Lee ; Deok-Hwan Kim</creatorcontrib><description>This letter presents lower limb human motion detection using a surface electromyogram (sEMG) with a top and slope (TAS) feature extraction algorithm. Lower limb human motion detection using sEMG signal is generally divided into gait subphase detection, locomotion mode recognition, and mode change detection. Existing feature extraction algorithms using sEMG signal have several innate problems in recognizing lower limb human motion detection. With respect to time-domain features, their values may be analogous because two different gait subphases and locomotion mode may have similar muscle activity pattern. Therefore, it is not easy to select the proper feature set of sEMG signals. The TAS feature extraction algorithm reflects better timing characteristics of sEMG signals than the existing time-domain feature extraction algorithm. Therefore, it can provide high accuracy in lower limb human motion detection. Experimental results show that the average detection accuracy values of the proposed method in terms of the gait subphase detection, locomotion mode recognition, and mode change detection are increased by 8%, 5%, and 4% better than those of feature values of the Willison amplitude, respectively.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2016.2636320</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electromyography (EMG) ; Feature extraction ; gait recognition ; human–computer interaction ; Legged locomotion ; locomotion mode ; Motion detection ; Muscles ; Reactive power ; Signal processing algorithms ; Timing</subject><ispartof>IEEE signal processing letters, 2017-07, Vol.24 (7), p.929-932</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-4790b589161780295cfd624d4398e19eb552ca899b8c2fa64738ddce6f12fdb23</citedby><cites>FETCH-LOGICAL-c329t-4790b589161780295cfd624d4398e19eb552ca899b8c2fa64738ddce6f12fdb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7776738$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7776738$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ryu, Jaehwan</creatorcontrib><creatorcontrib>Byeong-Hyeon Lee</creatorcontrib><creatorcontrib>Deok-Hwan Kim</creatorcontrib><title>sEMG Signal-Based Lower Limb Human Motion Detection Using a Top and Slope Feature Extraction Algorithm</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This letter presents lower limb human motion detection using a surface electromyogram (sEMG) with a top and slope (TAS) feature extraction algorithm. Lower limb human motion detection using sEMG signal is generally divided into gait subphase detection, locomotion mode recognition, and mode change detection. Existing feature extraction algorithms using sEMG signal have several innate problems in recognizing lower limb human motion detection. With respect to time-domain features, their values may be analogous because two different gait subphases and locomotion mode may have similar muscle activity pattern. Therefore, it is not easy to select the proper feature set of sEMG signals. The TAS feature extraction algorithm reflects better timing characteristics of sEMG signals than the existing time-domain feature extraction algorithm. Therefore, it can provide high accuracy in lower limb human motion detection. Experimental results show that the average detection accuracy values of the proposed method in terms of the gait subphase detection, locomotion mode recognition, and mode change detection are increased by 8%, 5%, and 4% better than those of feature values of the Willison amplitude, respectively.</description><subject>Electromyography (EMG)</subject><subject>Feature extraction</subject><subject>gait recognition</subject><subject>human–computer interaction</subject><subject>Legged locomotion</subject><subject>locomotion mode</subject><subject>Motion detection</subject><subject>Muscles</subject><subject>Reactive power</subject><subject>Signal processing algorithms</subject><subject>Timing</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwjAYhhujiYjeTbz0Dwy_tmvXHhEBTUY0Ac5Lt33DmW0l7Yj67x1CPL3v4X3ew0PIPYMJY2Ae0_X7hANTE66EEhwuyIhJqSMuFLscOiQQGQP6mtyE8AkAmmk5IlWYr5Z0Xe8620RPNmBJU_eFnqZ1m9OXQ2s7unJ97Tr6jD0Wf20b6m5HLd24PbVdSdeN2yNdoO0PHun8u_f2NJw2O-fr_qO9JVeVbQLenXNMtov5ZvYSpW_L19k0jQrBTR_FiYFcasMUSzRwI4uqVDwuY2E0MoO5lLyw2phcF7yyKk6ELssCVcV4VeZcjAmcfgvvQvBYZXtft9b_ZAyyo6ds8JQdPWVnTwPycEJqRPyfJ0mihnPxC4GqY6o</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Ryu, Jaehwan</creator><creator>Byeong-Hyeon Lee</creator><creator>Deok-Hwan Kim</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201707</creationdate><title>sEMG Signal-Based Lower Limb Human Motion Detection Using a Top and Slope Feature Extraction Algorithm</title><author>Ryu, Jaehwan ; Byeong-Hyeon Lee ; Deok-Hwan Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-4790b589161780295cfd624d4398e19eb552ca899b8c2fa64738ddce6f12fdb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Electromyography (EMG)</topic><topic>Feature extraction</topic><topic>gait recognition</topic><topic>human–computer interaction</topic><topic>Legged locomotion</topic><topic>locomotion mode</topic><topic>Motion detection</topic><topic>Muscles</topic><topic>Reactive power</topic><topic>Signal processing algorithms</topic><topic>Timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryu, Jaehwan</creatorcontrib><creatorcontrib>Byeong-Hyeon Lee</creatorcontrib><creatorcontrib>Deok-Hwan Kim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ryu, Jaehwan</au><au>Byeong-Hyeon Lee</au><au>Deok-Hwan Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>sEMG Signal-Based Lower Limb Human Motion Detection Using a Top and Slope Feature Extraction Algorithm</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2017-07</date><risdate>2017</risdate><volume>24</volume><issue>7</issue><spage>929</spage><epage>932</epage><pages>929-932</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This letter presents lower limb human motion detection using a surface electromyogram (sEMG) with a top and slope (TAS) feature extraction algorithm. Lower limb human motion detection using sEMG signal is generally divided into gait subphase detection, locomotion mode recognition, and mode change detection. Existing feature extraction algorithms using sEMG signal have several innate problems in recognizing lower limb human motion detection. With respect to time-domain features, their values may be analogous because two different gait subphases and locomotion mode may have similar muscle activity pattern. Therefore, it is not easy to select the proper feature set of sEMG signals. The TAS feature extraction algorithm reflects better timing characteristics of sEMG signals than the existing time-domain feature extraction algorithm. Therefore, it can provide high accuracy in lower limb human motion detection. Experimental results show that the average detection accuracy values of the proposed method in terms of the gait subphase detection, locomotion mode recognition, and mode change detection are increased by 8%, 5%, and 4% better than those of feature values of the Willison amplitude, respectively.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2016.2636320</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2017-07, Vol.24 (7), p.929-932
issn 1070-9908
1558-2361
language eng
recordid cdi_crossref_primary_10_1109_LSP_2016_2636320
source IEEE Electronic Library (IEL)
subjects Electromyography (EMG)
Feature extraction
gait recognition
human–computer interaction
Legged locomotion
locomotion mode
Motion detection
Muscles
Reactive power
Signal processing algorithms
Timing
title sEMG Signal-Based Lower Limb Human Motion Detection Using a Top and Slope Feature Extraction Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=sEMG%20Signal-Based%20Lower%20Limb%20Human%20Motion%20Detection%20Using%20a%20Top%20and%20Slope%20Feature%20Extraction%20Algorithm&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Ryu,%20Jaehwan&rft.date=2017-07&rft.volume=24&rft.issue=7&rft.spage=929&rft.epage=932&rft.pages=929-932&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2016.2636320&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2016_2636320%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7776738&rfr_iscdi=true