Domain Mismatch Compensation for Speaker Recognition Using a Library of Whiteners

The development of the i-vector framework for generating low dimensional representations of speech utterances has led to considerable improvements in speaker recognition performance. Although these gains have been achieved in periodic National Institute of Standards and Technology (NIST) evaluations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2015-11, Vol.22 (11), p.2000-2003
Hauptverfasser: Singer, Elliot, Reynolds, Douglas A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2003
container_issue 11
container_start_page 2000
container_title IEEE signal processing letters
container_volume 22
creator Singer, Elliot
Reynolds, Douglas A.
description The development of the i-vector framework for generating low dimensional representations of speech utterances has led to considerable improvements in speaker recognition performance. Although these gains have been achieved in periodic National Institute of Standards and Technology (NIST) evaluations, the problem of domain mismatch, where the system development data and the application data are collected from different sources, remains a challenging one. The impact of domain mismatch was a focus of the Johns Hopkins University (JHU) 2013 speaker recognition workshop, where a domain adaptation challenge (DAC13) corpus was created to address this problem. This paper proposes an approach to domain mismatch compensation for applications where in-domain development data is assumed to be unavailable. The method is based on a generalization of data whitening used in association with i-vector length normalization and utilizes a library of whitening transforms trained at system development time using strictly out-of-domain data. The approach is evaluated on the 2013 domain adaptation challenge task and is shown to compare favorably to in-domain conventional whitening and to nuisance attribute projection (NAP) inter-dataset variability compensation.
doi_str_mv 10.1109/LSP.2015.2451591
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2015_2451591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7145413</ieee_id><sourcerecordid>10_1109_LSP_2015_2451591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-e35bc7b675f368efab601fef02c5f5cf61b784892876f695c57497a8691e99e3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUv-wNbMZvN1lKpVWPGjFY9LNkzaqLspyV78925t8fQOL_MMw0PIJbAZADPX9fJlVjIQs7ISIAwckQkIoYuSSzgeZ6ZYYQzTp-Qs50_GmAYtJuT1NnY29PQp5M4ObkPnsdtin-0QYk99THS5RfuFib6hi-s-_PXvOfRramkd2mTTD42efmzCgD2mfE5OvP3OeHHIKVnd363mD0X9vHic39SFKyUfCuSidaqVSnguNXrbSgYePSud8MJ5Ca3SlTalVtJLI5xQlVFWSwNoDPIpYfuzLsWcE_pmm0I3PtMAa3ZGmtFIszPSHIyMyNUeCYj4v66gEhVw_gtvp10S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Domain Mismatch Compensation for Speaker Recognition Using a Library of Whiteners</title><source>IEEE Electronic Library (IEL)</source><creator>Singer, Elliot ; Reynolds, Douglas A.</creator><creatorcontrib>Singer, Elliot ; Reynolds, Douglas A.</creatorcontrib><description>The development of the i-vector framework for generating low dimensional representations of speech utterances has led to considerable improvements in speaker recognition performance. Although these gains have been achieved in periodic National Institute of Standards and Technology (NIST) evaluations, the problem of domain mismatch, where the system development data and the application data are collected from different sources, remains a challenging one. The impact of domain mismatch was a focus of the Johns Hopkins University (JHU) 2013 speaker recognition workshop, where a domain adaptation challenge (DAC13) corpus was created to address this problem. This paper proposes an approach to domain mismatch compensation for applications where in-domain development data is assumed to be unavailable. The method is based on a generalization of data whitening used in association with i-vector length normalization and utilizes a library of whitening transforms trained at system development time using strictly out-of-domain data. The approach is evaluated on the 2013 domain adaptation challenge task and is shown to compare favorably to in-domain conventional whitening and to nuisance attribute projection (NAP) inter-dataset variability compensation.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2015.2451591</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Channel compensation ; Computational modeling ; Conferences ; Covariance matrices ; domain mismatch ; i-vectors ; Libraries ; NIST ; Speaker recognition ; Speech ; whitening</subject><ispartof>IEEE signal processing letters, 2015-11, Vol.22 (11), p.2000-2003</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-e35bc7b675f368efab601fef02c5f5cf61b784892876f695c57497a8691e99e3</citedby><cites>FETCH-LOGICAL-c263t-e35bc7b675f368efab601fef02c5f5cf61b784892876f695c57497a8691e99e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7145413$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7145413$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Singer, Elliot</creatorcontrib><creatorcontrib>Reynolds, Douglas A.</creatorcontrib><title>Domain Mismatch Compensation for Speaker Recognition Using a Library of Whiteners</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>The development of the i-vector framework for generating low dimensional representations of speech utterances has led to considerable improvements in speaker recognition performance. Although these gains have been achieved in periodic National Institute of Standards and Technology (NIST) evaluations, the problem of domain mismatch, where the system development data and the application data are collected from different sources, remains a challenging one. The impact of domain mismatch was a focus of the Johns Hopkins University (JHU) 2013 speaker recognition workshop, where a domain adaptation challenge (DAC13) corpus was created to address this problem. This paper proposes an approach to domain mismatch compensation for applications where in-domain development data is assumed to be unavailable. The method is based on a generalization of data whitening used in association with i-vector length normalization and utilizes a library of whitening transforms trained at system development time using strictly out-of-domain data. The approach is evaluated on the 2013 domain adaptation challenge task and is shown to compare favorably to in-domain conventional whitening and to nuisance attribute projection (NAP) inter-dataset variability compensation.</description><subject>Channel compensation</subject><subject>Computational modeling</subject><subject>Conferences</subject><subject>Covariance matrices</subject><subject>domain mismatch</subject><subject>i-vectors</subject><subject>Libraries</subject><subject>NIST</subject><subject>Speaker recognition</subject><subject>Speech</subject><subject>whitening</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUv-wNbMZvN1lKpVWPGjFY9LNkzaqLspyV78925t8fQOL_MMw0PIJbAZADPX9fJlVjIQs7ISIAwckQkIoYuSSzgeZ6ZYYQzTp-Qs50_GmAYtJuT1NnY29PQp5M4ObkPnsdtin-0QYk99THS5RfuFib6hi-s-_PXvOfRramkd2mTTD42efmzCgD2mfE5OvP3OeHHIKVnd363mD0X9vHic39SFKyUfCuSidaqVSnguNXrbSgYePSud8MJ5Ca3SlTalVtJLI5xQlVFWSwNoDPIpYfuzLsWcE_pmm0I3PtMAa3ZGmtFIszPSHIyMyNUeCYj4v66gEhVw_gtvp10S</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Singer, Elliot</creator><creator>Reynolds, Douglas A.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201511</creationdate><title>Domain Mismatch Compensation for Speaker Recognition Using a Library of Whiteners</title><author>Singer, Elliot ; Reynolds, Douglas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-e35bc7b675f368efab601fef02c5f5cf61b784892876f695c57497a8691e99e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Channel compensation</topic><topic>Computational modeling</topic><topic>Conferences</topic><topic>Covariance matrices</topic><topic>domain mismatch</topic><topic>i-vectors</topic><topic>Libraries</topic><topic>NIST</topic><topic>Speaker recognition</topic><topic>Speech</topic><topic>whitening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singer, Elliot</creatorcontrib><creatorcontrib>Reynolds, Douglas A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Singer, Elliot</au><au>Reynolds, Douglas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain Mismatch Compensation for Speaker Recognition Using a Library of Whiteners</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2015-11</date><risdate>2015</risdate><volume>22</volume><issue>11</issue><spage>2000</spage><epage>2003</epage><pages>2000-2003</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>The development of the i-vector framework for generating low dimensional representations of speech utterances has led to considerable improvements in speaker recognition performance. Although these gains have been achieved in periodic National Institute of Standards and Technology (NIST) evaluations, the problem of domain mismatch, where the system development data and the application data are collected from different sources, remains a challenging one. The impact of domain mismatch was a focus of the Johns Hopkins University (JHU) 2013 speaker recognition workshop, where a domain adaptation challenge (DAC13) corpus was created to address this problem. This paper proposes an approach to domain mismatch compensation for applications where in-domain development data is assumed to be unavailable. The method is based on a generalization of data whitening used in association with i-vector length normalization and utilizes a library of whitening transforms trained at system development time using strictly out-of-domain data. The approach is evaluated on the 2013 domain adaptation challenge task and is shown to compare favorably to in-domain conventional whitening and to nuisance attribute projection (NAP) inter-dataset variability compensation.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2015.2451591</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2015-11, Vol.22 (11), p.2000-2003
issn 1070-9908
1558-2361
language eng
recordid cdi_crossref_primary_10_1109_LSP_2015_2451591
source IEEE Electronic Library (IEL)
subjects Channel compensation
Computational modeling
Conferences
Covariance matrices
domain mismatch
i-vectors
Libraries
NIST
Speaker recognition
Speech
whitening
title Domain Mismatch Compensation for Speaker Recognition Using a Library of Whiteners
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20Mismatch%20Compensation%20for%20Speaker%20Recognition%20Using%20a%20Library%20of%20Whiteners&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Singer,%20Elliot&rft.date=2015-11&rft.volume=22&rft.issue=11&rft.spage=2000&rft.epage=2003&rft.pages=2000-2003&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2015.2451591&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2015_2451591%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7145413&rfr_iscdi=true