Domain Mismatch Compensation for Speaker Recognition Using a Library of Whiteners
The development of the i-vector framework for generating low dimensional representations of speech utterances has led to considerable improvements in speaker recognition performance. Although these gains have been achieved in periodic National Institute of Standards and Technology (NIST) evaluations...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2015-11, Vol.22 (11), p.2000-2003 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2003 |
---|---|
container_issue | 11 |
container_start_page | 2000 |
container_title | IEEE signal processing letters |
container_volume | 22 |
creator | Singer, Elliot Reynolds, Douglas A. |
description | The development of the i-vector framework for generating low dimensional representations of speech utterances has led to considerable improvements in speaker recognition performance. Although these gains have been achieved in periodic National Institute of Standards and Technology (NIST) evaluations, the problem of domain mismatch, where the system development data and the application data are collected from different sources, remains a challenging one. The impact of domain mismatch was a focus of the Johns Hopkins University (JHU) 2013 speaker recognition workshop, where a domain adaptation challenge (DAC13) corpus was created to address this problem. This paper proposes an approach to domain mismatch compensation for applications where in-domain development data is assumed to be unavailable. The method is based on a generalization of data whitening used in association with i-vector length normalization and utilizes a library of whitening transforms trained at system development time using strictly out-of-domain data. The approach is evaluated on the 2013 domain adaptation challenge task and is shown to compare favorably to in-domain conventional whitening and to nuisance attribute projection (NAP) inter-dataset variability compensation. |
doi_str_mv | 10.1109/LSP.2015.2451591 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2015_2451591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7145413</ieee_id><sourcerecordid>10_1109_LSP_2015_2451591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-e35bc7b675f368efab601fef02c5f5cf61b784892876f695c57497a8691e99e3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUv-wNbMZvN1lKpVWPGjFY9LNkzaqLspyV78925t8fQOL_MMw0PIJbAZADPX9fJlVjIQs7ISIAwckQkIoYuSSzgeZ6ZYYQzTp-Qs50_GmAYtJuT1NnY29PQp5M4ObkPnsdtin-0QYk99THS5RfuFib6hi-s-_PXvOfRramkd2mTTD42efmzCgD2mfE5OvP3OeHHIKVnd363mD0X9vHic39SFKyUfCuSidaqVSnguNXrbSgYePSud8MJ5Ca3SlTalVtJLI5xQlVFWSwNoDPIpYfuzLsWcE_pmm0I3PtMAa3ZGmtFIszPSHIyMyNUeCYj4v66gEhVw_gtvp10S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Domain Mismatch Compensation for Speaker Recognition Using a Library of Whiteners</title><source>IEEE Electronic Library (IEL)</source><creator>Singer, Elliot ; Reynolds, Douglas A.</creator><creatorcontrib>Singer, Elliot ; Reynolds, Douglas A.</creatorcontrib><description>The development of the i-vector framework for generating low dimensional representations of speech utterances has led to considerable improvements in speaker recognition performance. Although these gains have been achieved in periodic National Institute of Standards and Technology (NIST) evaluations, the problem of domain mismatch, where the system development data and the application data are collected from different sources, remains a challenging one. The impact of domain mismatch was a focus of the Johns Hopkins University (JHU) 2013 speaker recognition workshop, where a domain adaptation challenge (DAC13) corpus was created to address this problem. This paper proposes an approach to domain mismatch compensation for applications where in-domain development data is assumed to be unavailable. The method is based on a generalization of data whitening used in association with i-vector length normalization and utilizes a library of whitening transforms trained at system development time using strictly out-of-domain data. The approach is evaluated on the 2013 domain adaptation challenge task and is shown to compare favorably to in-domain conventional whitening and to nuisance attribute projection (NAP) inter-dataset variability compensation.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2015.2451591</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Channel compensation ; Computational modeling ; Conferences ; Covariance matrices ; domain mismatch ; i-vectors ; Libraries ; NIST ; Speaker recognition ; Speech ; whitening</subject><ispartof>IEEE signal processing letters, 2015-11, Vol.22 (11), p.2000-2003</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-e35bc7b675f368efab601fef02c5f5cf61b784892876f695c57497a8691e99e3</citedby><cites>FETCH-LOGICAL-c263t-e35bc7b675f368efab601fef02c5f5cf61b784892876f695c57497a8691e99e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7145413$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7145413$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Singer, Elliot</creatorcontrib><creatorcontrib>Reynolds, Douglas A.</creatorcontrib><title>Domain Mismatch Compensation for Speaker Recognition Using a Library of Whiteners</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>The development of the i-vector framework for generating low dimensional representations of speech utterances has led to considerable improvements in speaker recognition performance. Although these gains have been achieved in periodic National Institute of Standards and Technology (NIST) evaluations, the problem of domain mismatch, where the system development data and the application data are collected from different sources, remains a challenging one. The impact of domain mismatch was a focus of the Johns Hopkins University (JHU) 2013 speaker recognition workshop, where a domain adaptation challenge (DAC13) corpus was created to address this problem. This paper proposes an approach to domain mismatch compensation for applications where in-domain development data is assumed to be unavailable. The method is based on a generalization of data whitening used in association with i-vector length normalization and utilizes a library of whitening transforms trained at system development time using strictly out-of-domain data. The approach is evaluated on the 2013 domain adaptation challenge task and is shown to compare favorably to in-domain conventional whitening and to nuisance attribute projection (NAP) inter-dataset variability compensation.</description><subject>Channel compensation</subject><subject>Computational modeling</subject><subject>Conferences</subject><subject>Covariance matrices</subject><subject>domain mismatch</subject><subject>i-vectors</subject><subject>Libraries</subject><subject>NIST</subject><subject>Speaker recognition</subject><subject>Speech</subject><subject>whitening</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUv-wNbMZvN1lKpVWPGjFY9LNkzaqLspyV78925t8fQOL_MMw0PIJbAZADPX9fJlVjIQs7ISIAwckQkIoYuSSzgeZ6ZYYQzTp-Qs50_GmAYtJuT1NnY29PQp5M4ObkPnsdtin-0QYk99THS5RfuFib6hi-s-_PXvOfRramkd2mTTD42efmzCgD2mfE5OvP3OeHHIKVnd363mD0X9vHic39SFKyUfCuSidaqVSnguNXrbSgYePSud8MJ5Ca3SlTalVtJLI5xQlVFWSwNoDPIpYfuzLsWcE_pmm0I3PtMAa3ZGmtFIszPSHIyMyNUeCYj4v66gEhVw_gtvp10S</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Singer, Elliot</creator><creator>Reynolds, Douglas A.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201511</creationdate><title>Domain Mismatch Compensation for Speaker Recognition Using a Library of Whiteners</title><author>Singer, Elliot ; Reynolds, Douglas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-e35bc7b675f368efab601fef02c5f5cf61b784892876f695c57497a8691e99e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Channel compensation</topic><topic>Computational modeling</topic><topic>Conferences</topic><topic>Covariance matrices</topic><topic>domain mismatch</topic><topic>i-vectors</topic><topic>Libraries</topic><topic>NIST</topic><topic>Speaker recognition</topic><topic>Speech</topic><topic>whitening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singer, Elliot</creatorcontrib><creatorcontrib>Reynolds, Douglas A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Singer, Elliot</au><au>Reynolds, Douglas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain Mismatch Compensation for Speaker Recognition Using a Library of Whiteners</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2015-11</date><risdate>2015</risdate><volume>22</volume><issue>11</issue><spage>2000</spage><epage>2003</epage><pages>2000-2003</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>The development of the i-vector framework for generating low dimensional representations of speech utterances has led to considerable improvements in speaker recognition performance. Although these gains have been achieved in periodic National Institute of Standards and Technology (NIST) evaluations, the problem of domain mismatch, where the system development data and the application data are collected from different sources, remains a challenging one. The impact of domain mismatch was a focus of the Johns Hopkins University (JHU) 2013 speaker recognition workshop, where a domain adaptation challenge (DAC13) corpus was created to address this problem. This paper proposes an approach to domain mismatch compensation for applications where in-domain development data is assumed to be unavailable. The method is based on a generalization of data whitening used in association with i-vector length normalization and utilizes a library of whitening transforms trained at system development time using strictly out-of-domain data. The approach is evaluated on the 2013 domain adaptation challenge task and is shown to compare favorably to in-domain conventional whitening and to nuisance attribute projection (NAP) inter-dataset variability compensation.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2015.2451591</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2015-11, Vol.22 (11), p.2000-2003 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LSP_2015_2451591 |
source | IEEE Electronic Library (IEL) |
subjects | Channel compensation Computational modeling Conferences Covariance matrices domain mismatch i-vectors Libraries NIST Speaker recognition Speech whitening |
title | Domain Mismatch Compensation for Speaker Recognition Using a Library of Whiteners |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20Mismatch%20Compensation%20for%20Speaker%20Recognition%20Using%20a%20Library%20of%20Whiteners&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Singer,%20Elliot&rft.date=2015-11&rft.volume=22&rft.issue=11&rft.spage=2000&rft.epage=2003&rft.pages=2000-2003&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2015.2451591&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2015_2451591%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7145413&rfr_iscdi=true |