Knowledge-Aided Adaptive Coherence Estimator in Stochastic Partially Homogeneous Environments
This letter introduces a stochastic partially homogeneous model for adaptive signal detection. In this model, the disturbance covariance matrix of training signals, {\bf R} , is assumed to be a random matrix with some a priori information, while the disturbance covariance matrix of the test signal,...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2011-03, Vol.18 (3), p.193-196 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 196 |
---|---|
container_issue | 3 |
container_start_page | 193 |
container_title | IEEE signal processing letters |
container_volume | 18 |
creator | Wang, Pu Sahinoglu, Zafer Pun, Man-On Li, Hongbin Himed, Braham |
description | This letter introduces a stochastic partially homogeneous model for adaptive signal detection. In this model, the disturbance covariance matrix of training signals, {\bf R} , is assumed to be a random matrix with some a priori information, while the disturbance covariance matrix of the test signal, {\bf R}_{0} , is assumed to be equal to \lambda{\bf R} , i.e., {\bf R}_{0}=\lambda{\bf R} . On one hand, this model extends the stochastic homogeneous model by introducing an unknown power scaling factor \lambda between the test and training signals. On the other hand, it can be considered as a generalization of the standard partially homogeneous model to the stochastic Bayesian framework, which treats the covariance matrix as a random matrix. According to the stochastic partially homogeneous model, a scale-invariant generalized likelihood ratio test (GLRT) for the adaptive signal detection is developed, which is a knowledge-aided version of the well-known adaptive coherence estimator (ACE). The resulting knowledge-aided ACE (KA-ACE) employs a colored loading step utilizing the a priori knowledge and the sample covariance matrix. Various simulation results and comparison with respect to other detectors confirm the scale-invariance and the effectiveness of the KA-ACE. |
doi_str_mv | 10.1109/LSP.2011.2107510 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2011_2107510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5696739</ieee_id><sourcerecordid>861563869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2790-85794b7f4acab35c5a720dca0e2d530e2071e5337bb4a2f2df130f1bc9c975383</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhhdR8PMueFm8eNo6STab5FhKtWLBQvUoIZud1ZVtUpOt0n9vtOLBy8wwPDO8PFl2TmBECKjr-XIxokDIiBIQnMBedkQ4lwVlFdlPMwgolAJ5mB3H-AYAkkh-lD3fO__ZY_OCxbhrsMnHjVkP3QfmE_-KAZ3FfBqHbmUGH_LO5cvB21eTNjZfmDB0pu-3-cyv_As69JuYT91HF7xboRviaXbQmj7i2W8_yZ5upo-TWTF_uL2bjOeFpUJBIblQZS3a0lhTM265ERQaawBpw1mqIAhyxkRdl4a2tGkJg5bUVlklOJPsJLva_V0H_77BOOhVFy32vfnJpGVFeMVkpRJ5-Y9885vgUjgtS8WopKxMEOwgG3yMAVu9DslA2GoC-tu2Trb1t239azudXOxOOkT8w3mlKsEU-wJzKHuJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849328234</pqid></control><display><type>article</type><title>Knowledge-Aided Adaptive Coherence Estimator in Stochastic Partially Homogeneous Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Pu ; Sahinoglu, Zafer ; Pun, Man-On ; Li, Hongbin ; Himed, Braham</creator><creatorcontrib>Wang, Pu ; Sahinoglu, Zafer ; Pun, Man-On ; Li, Hongbin ; Himed, Braham</creatorcontrib><description>This letter introduces a stochastic partially homogeneous model for adaptive signal detection. In this model, the disturbance covariance matrix of training signals, {\bf R} , is assumed to be a random matrix with some a priori information, while the disturbance covariance matrix of the test signal, {\bf R}_{0} , is assumed to be equal to \lambda{\bf R} , i.e., {\bf R}_{0}=\lambda{\bf R} . On one hand, this model extends the stochastic homogeneous model by introducing an unknown power scaling factor \lambda between the test and training signals. On the other hand, it can be considered as a generalization of the standard partially homogeneous model to the stochastic Bayesian framework, which treats the covariance matrix as a random matrix. According to the stochastic partially homogeneous model, a scale-invariant generalized likelihood ratio test (GLRT) for the adaptive signal detection is developed, which is a knowledge-aided version of the well-known adaptive coherence estimator (ACE). The resulting knowledge-aided ACE (KA-ACE) employs a colored loading step utilizing the a priori knowledge and the sample covariance matrix. Various simulation results and comparison with respect to other detectors confirm the scale-invariance and the effectiveness of the KA-ACE.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2011.2107510</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation model ; Bayesian inference ; Bayesian methods ; Coherence ; Covariance matrix ; Detectors ; Disturbances ; Estimators ; generalized likelihood ratio test ; knowledge-aided ; Likelihood ratio ; Mathematical models ; partially homogeneous model ; Signal detection ; Signal to noise ratio ; Stochastic processes ; Stochasticity ; Studies ; Training</subject><ispartof>IEEE signal processing letters, 2011-03, Vol.18 (3), p.193-196</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2790-85794b7f4acab35c5a720dca0e2d530e2071e5337bb4a2f2df130f1bc9c975383</citedby><cites>FETCH-LOGICAL-c2790-85794b7f4acab35c5a720dca0e2d530e2071e5337bb4a2f2df130f1bc9c975383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5696739$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5696739$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Pu</creatorcontrib><creatorcontrib>Sahinoglu, Zafer</creatorcontrib><creatorcontrib>Pun, Man-On</creatorcontrib><creatorcontrib>Li, Hongbin</creatorcontrib><creatorcontrib>Himed, Braham</creatorcontrib><title>Knowledge-Aided Adaptive Coherence Estimator in Stochastic Partially Homogeneous Environments</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This letter introduces a stochastic partially homogeneous model for adaptive signal detection. In this model, the disturbance covariance matrix of training signals, {\bf R} , is assumed to be a random matrix with some a priori information, while the disturbance covariance matrix of the test signal, {\bf R}_{0} , is assumed to be equal to \lambda{\bf R} , i.e., {\bf R}_{0}=\lambda{\bf R} . On one hand, this model extends the stochastic homogeneous model by introducing an unknown power scaling factor \lambda between the test and training signals. On the other hand, it can be considered as a generalization of the standard partially homogeneous model to the stochastic Bayesian framework, which treats the covariance matrix as a random matrix. According to the stochastic partially homogeneous model, a scale-invariant generalized likelihood ratio test (GLRT) for the adaptive signal detection is developed, which is a knowledge-aided version of the well-known adaptive coherence estimator (ACE). The resulting knowledge-aided ACE (KA-ACE) employs a colored loading step utilizing the a priori knowledge and the sample covariance matrix. Various simulation results and comparison with respect to other detectors confirm the scale-invariance and the effectiveness of the KA-ACE.</description><subject>Adaptation model</subject><subject>Bayesian inference</subject><subject>Bayesian methods</subject><subject>Coherence</subject><subject>Covariance matrix</subject><subject>Detectors</subject><subject>Disturbances</subject><subject>Estimators</subject><subject>generalized likelihood ratio test</subject><subject>knowledge-aided</subject><subject>Likelihood ratio</subject><subject>Mathematical models</subject><subject>partially homogeneous model</subject><subject>Signal detection</subject><subject>Signal to noise ratio</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Studies</subject><subject>Training</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhhdR8PMueFm8eNo6STab5FhKtWLBQvUoIZud1ZVtUpOt0n9vtOLBy8wwPDO8PFl2TmBECKjr-XIxokDIiBIQnMBedkQ4lwVlFdlPMwgolAJ5mB3H-AYAkkh-lD3fO__ZY_OCxbhrsMnHjVkP3QfmE_-KAZ3FfBqHbmUGH_LO5cvB21eTNjZfmDB0pu-3-cyv_As69JuYT91HF7xboRviaXbQmj7i2W8_yZ5upo-TWTF_uL2bjOeFpUJBIblQZS3a0lhTM265ERQaawBpw1mqIAhyxkRdl4a2tGkJg5bUVlklOJPsJLva_V0H_77BOOhVFy32vfnJpGVFeMVkpRJ5-Y9885vgUjgtS8WopKxMEOwgG3yMAVu9DslA2GoC-tu2Trb1t239azudXOxOOkT8w3mlKsEU-wJzKHuJ</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Wang, Pu</creator><creator>Sahinoglu, Zafer</creator><creator>Pun, Man-On</creator><creator>Li, Hongbin</creator><creator>Himed, Braham</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110301</creationdate><title>Knowledge-Aided Adaptive Coherence Estimator in Stochastic Partially Homogeneous Environments</title><author>Wang, Pu ; Sahinoglu, Zafer ; Pun, Man-On ; Li, Hongbin ; Himed, Braham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2790-85794b7f4acab35c5a720dca0e2d530e2071e5337bb4a2f2df130f1bc9c975383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation model</topic><topic>Bayesian inference</topic><topic>Bayesian methods</topic><topic>Coherence</topic><topic>Covariance matrix</topic><topic>Detectors</topic><topic>Disturbances</topic><topic>Estimators</topic><topic>generalized likelihood ratio test</topic><topic>knowledge-aided</topic><topic>Likelihood ratio</topic><topic>Mathematical models</topic><topic>partially homogeneous model</topic><topic>Signal detection</topic><topic>Signal to noise ratio</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Studies</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Pu</creatorcontrib><creatorcontrib>Sahinoglu, Zafer</creatorcontrib><creatorcontrib>Pun, Man-On</creatorcontrib><creatorcontrib>Li, Hongbin</creatorcontrib><creatorcontrib>Himed, Braham</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Pu</au><au>Sahinoglu, Zafer</au><au>Pun, Man-On</au><au>Li, Hongbin</au><au>Himed, Braham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge-Aided Adaptive Coherence Estimator in Stochastic Partially Homogeneous Environments</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2011-03-01</date><risdate>2011</risdate><volume>18</volume><issue>3</issue><spage>193</spage><epage>196</epage><pages>193-196</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This letter introduces a stochastic partially homogeneous model for adaptive signal detection. In this model, the disturbance covariance matrix of training signals, {\bf R} , is assumed to be a random matrix with some a priori information, while the disturbance covariance matrix of the test signal, {\bf R}_{0} , is assumed to be equal to \lambda{\bf R} , i.e., {\bf R}_{0}=\lambda{\bf R} . On one hand, this model extends the stochastic homogeneous model by introducing an unknown power scaling factor \lambda between the test and training signals. On the other hand, it can be considered as a generalization of the standard partially homogeneous model to the stochastic Bayesian framework, which treats the covariance matrix as a random matrix. According to the stochastic partially homogeneous model, a scale-invariant generalized likelihood ratio test (GLRT) for the adaptive signal detection is developed, which is a knowledge-aided version of the well-known adaptive coherence estimator (ACE). The resulting knowledge-aided ACE (KA-ACE) employs a colored loading step utilizing the a priori knowledge and the sample covariance matrix. Various simulation results and comparison with respect to other detectors confirm the scale-invariance and the effectiveness of the KA-ACE.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2011.2107510</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2011-03, Vol.18 (3), p.193-196 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LSP_2011_2107510 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation model Bayesian inference Bayesian methods Coherence Covariance matrix Detectors Disturbances Estimators generalized likelihood ratio test knowledge-aided Likelihood ratio Mathematical models partially homogeneous model Signal detection Signal to noise ratio Stochastic processes Stochasticity Studies Training |
title | Knowledge-Aided Adaptive Coherence Estimator in Stochastic Partially Homogeneous Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge-Aided%20Adaptive%20Coherence%20Estimator%20in%20Stochastic%20Partially%20Homogeneous%20Environments&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Wang,%20Pu&rft.date=2011-03-01&rft.volume=18&rft.issue=3&rft.spage=193&rft.epage=196&rft.pages=193-196&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2011.2107510&rft_dat=%3Cproquest_RIE%3E861563869%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849328234&rft_id=info:pmid/&rft_ieee_id=5696739&rfr_iscdi=true |