Knowledge-Aided Adaptive Coherence Estimator in Stochastic Partially Homogeneous Environments

This letter introduces a stochastic partially homogeneous model for adaptive signal detection. In this model, the disturbance covariance matrix of training signals, {\bf R} , is assumed to be a random matrix with some a priori information, while the disturbance covariance matrix of the test signal,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2011-03, Vol.18 (3), p.193-196
Hauptverfasser: Wang, Pu, Sahinoglu, Zafer, Pun, Man-On, Li, Hongbin, Himed, Braham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue 3
container_start_page 193
container_title IEEE signal processing letters
container_volume 18
creator Wang, Pu
Sahinoglu, Zafer
Pun, Man-On
Li, Hongbin
Himed, Braham
description This letter introduces a stochastic partially homogeneous model for adaptive signal detection. In this model, the disturbance covariance matrix of training signals, {\bf R} , is assumed to be a random matrix with some a priori information, while the disturbance covariance matrix of the test signal, {\bf R}_{0} , is assumed to be equal to \lambda{\bf R} , i.e., {\bf R}_{0}=\lambda{\bf R} . On one hand, this model extends the stochastic homogeneous model by introducing an unknown power scaling factor \lambda between the test and training signals. On the other hand, it can be considered as a generalization of the standard partially homogeneous model to the stochastic Bayesian framework, which treats the covariance matrix as a random matrix. According to the stochastic partially homogeneous model, a scale-invariant generalized likelihood ratio test (GLRT) for the adaptive signal detection is developed, which is a knowledge-aided version of the well-known adaptive coherence estimator (ACE). The resulting knowledge-aided ACE (KA-ACE) employs a colored loading step utilizing the a priori knowledge and the sample covariance matrix. Various simulation results and comparison with respect to other detectors confirm the scale-invariance and the effectiveness of the KA-ACE.
doi_str_mv 10.1109/LSP.2011.2107510
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2011_2107510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5696739</ieee_id><sourcerecordid>861563869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2790-85794b7f4acab35c5a720dca0e2d530e2071e5337bb4a2f2df130f1bc9c975383</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhhdR8PMueFm8eNo6STab5FhKtWLBQvUoIZud1ZVtUpOt0n9vtOLBy8wwPDO8PFl2TmBECKjr-XIxokDIiBIQnMBedkQ4lwVlFdlPMwgolAJ5mB3H-AYAkkh-lD3fO__ZY_OCxbhrsMnHjVkP3QfmE_-KAZ3FfBqHbmUGH_LO5cvB21eTNjZfmDB0pu-3-cyv_As69JuYT91HF7xboRviaXbQmj7i2W8_yZ5upo-TWTF_uL2bjOeFpUJBIblQZS3a0lhTM265ERQaawBpw1mqIAhyxkRdl4a2tGkJg5bUVlklOJPsJLva_V0H_77BOOhVFy32vfnJpGVFeMVkpRJ5-Y9885vgUjgtS8WopKxMEOwgG3yMAVu9DslA2GoC-tu2Trb1t239azudXOxOOkT8w3mlKsEU-wJzKHuJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849328234</pqid></control><display><type>article</type><title>Knowledge-Aided Adaptive Coherence Estimator in Stochastic Partially Homogeneous Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Pu ; Sahinoglu, Zafer ; Pun, Man-On ; Li, Hongbin ; Himed, Braham</creator><creatorcontrib>Wang, Pu ; Sahinoglu, Zafer ; Pun, Man-On ; Li, Hongbin ; Himed, Braham</creatorcontrib><description>This letter introduces a stochastic partially homogeneous model for adaptive signal detection. In this model, the disturbance covariance matrix of training signals, {\bf R} , is assumed to be a random matrix with some a priori information, while the disturbance covariance matrix of the test signal, {\bf R}_{0} , is assumed to be equal to \lambda{\bf R} , i.e., {\bf R}_{0}=\lambda{\bf R} . On one hand, this model extends the stochastic homogeneous model by introducing an unknown power scaling factor \lambda between the test and training signals. On the other hand, it can be considered as a generalization of the standard partially homogeneous model to the stochastic Bayesian framework, which treats the covariance matrix as a random matrix. According to the stochastic partially homogeneous model, a scale-invariant generalized likelihood ratio test (GLRT) for the adaptive signal detection is developed, which is a knowledge-aided version of the well-known adaptive coherence estimator (ACE). The resulting knowledge-aided ACE (KA-ACE) employs a colored loading step utilizing the a priori knowledge and the sample covariance matrix. Various simulation results and comparison with respect to other detectors confirm the scale-invariance and the effectiveness of the KA-ACE.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2011.2107510</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation model ; Bayesian inference ; Bayesian methods ; Coherence ; Covariance matrix ; Detectors ; Disturbances ; Estimators ; generalized likelihood ratio test ; knowledge-aided ; Likelihood ratio ; Mathematical models ; partially homogeneous model ; Signal detection ; Signal to noise ratio ; Stochastic processes ; Stochasticity ; Studies ; Training</subject><ispartof>IEEE signal processing letters, 2011-03, Vol.18 (3), p.193-196</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2790-85794b7f4acab35c5a720dca0e2d530e2071e5337bb4a2f2df130f1bc9c975383</citedby><cites>FETCH-LOGICAL-c2790-85794b7f4acab35c5a720dca0e2d530e2071e5337bb4a2f2df130f1bc9c975383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5696739$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5696739$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Pu</creatorcontrib><creatorcontrib>Sahinoglu, Zafer</creatorcontrib><creatorcontrib>Pun, Man-On</creatorcontrib><creatorcontrib>Li, Hongbin</creatorcontrib><creatorcontrib>Himed, Braham</creatorcontrib><title>Knowledge-Aided Adaptive Coherence Estimator in Stochastic Partially Homogeneous Environments</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This letter introduces a stochastic partially homogeneous model for adaptive signal detection. In this model, the disturbance covariance matrix of training signals, {\bf R} , is assumed to be a random matrix with some a priori information, while the disturbance covariance matrix of the test signal, {\bf R}_{0} , is assumed to be equal to \lambda{\bf R} , i.e., {\bf R}_{0}=\lambda{\bf R} . On one hand, this model extends the stochastic homogeneous model by introducing an unknown power scaling factor \lambda between the test and training signals. On the other hand, it can be considered as a generalization of the standard partially homogeneous model to the stochastic Bayesian framework, which treats the covariance matrix as a random matrix. According to the stochastic partially homogeneous model, a scale-invariant generalized likelihood ratio test (GLRT) for the adaptive signal detection is developed, which is a knowledge-aided version of the well-known adaptive coherence estimator (ACE). The resulting knowledge-aided ACE (KA-ACE) employs a colored loading step utilizing the a priori knowledge and the sample covariance matrix. Various simulation results and comparison with respect to other detectors confirm the scale-invariance and the effectiveness of the KA-ACE.</description><subject>Adaptation model</subject><subject>Bayesian inference</subject><subject>Bayesian methods</subject><subject>Coherence</subject><subject>Covariance matrix</subject><subject>Detectors</subject><subject>Disturbances</subject><subject>Estimators</subject><subject>generalized likelihood ratio test</subject><subject>knowledge-aided</subject><subject>Likelihood ratio</subject><subject>Mathematical models</subject><subject>partially homogeneous model</subject><subject>Signal detection</subject><subject>Signal to noise ratio</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Studies</subject><subject>Training</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhhdR8PMueFm8eNo6STab5FhKtWLBQvUoIZud1ZVtUpOt0n9vtOLBy8wwPDO8PFl2TmBECKjr-XIxokDIiBIQnMBedkQ4lwVlFdlPMwgolAJ5mB3H-AYAkkh-lD3fO__ZY_OCxbhrsMnHjVkP3QfmE_-KAZ3FfBqHbmUGH_LO5cvB21eTNjZfmDB0pu-3-cyv_As69JuYT91HF7xboRviaXbQmj7i2W8_yZ5upo-TWTF_uL2bjOeFpUJBIblQZS3a0lhTM265ERQaawBpw1mqIAhyxkRdl4a2tGkJg5bUVlklOJPsJLva_V0H_77BOOhVFy32vfnJpGVFeMVkpRJ5-Y9885vgUjgtS8WopKxMEOwgG3yMAVu9DslA2GoC-tu2Trb1t239azudXOxOOkT8w3mlKsEU-wJzKHuJ</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Wang, Pu</creator><creator>Sahinoglu, Zafer</creator><creator>Pun, Man-On</creator><creator>Li, Hongbin</creator><creator>Himed, Braham</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110301</creationdate><title>Knowledge-Aided Adaptive Coherence Estimator in Stochastic Partially Homogeneous Environments</title><author>Wang, Pu ; Sahinoglu, Zafer ; Pun, Man-On ; Li, Hongbin ; Himed, Braham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2790-85794b7f4acab35c5a720dca0e2d530e2071e5337bb4a2f2df130f1bc9c975383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation model</topic><topic>Bayesian inference</topic><topic>Bayesian methods</topic><topic>Coherence</topic><topic>Covariance matrix</topic><topic>Detectors</topic><topic>Disturbances</topic><topic>Estimators</topic><topic>generalized likelihood ratio test</topic><topic>knowledge-aided</topic><topic>Likelihood ratio</topic><topic>Mathematical models</topic><topic>partially homogeneous model</topic><topic>Signal detection</topic><topic>Signal to noise ratio</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Studies</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Pu</creatorcontrib><creatorcontrib>Sahinoglu, Zafer</creatorcontrib><creatorcontrib>Pun, Man-On</creatorcontrib><creatorcontrib>Li, Hongbin</creatorcontrib><creatorcontrib>Himed, Braham</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Pu</au><au>Sahinoglu, Zafer</au><au>Pun, Man-On</au><au>Li, Hongbin</au><au>Himed, Braham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge-Aided Adaptive Coherence Estimator in Stochastic Partially Homogeneous Environments</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2011-03-01</date><risdate>2011</risdate><volume>18</volume><issue>3</issue><spage>193</spage><epage>196</epage><pages>193-196</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This letter introduces a stochastic partially homogeneous model for adaptive signal detection. In this model, the disturbance covariance matrix of training signals, {\bf R} , is assumed to be a random matrix with some a priori information, while the disturbance covariance matrix of the test signal, {\bf R}_{0} , is assumed to be equal to \lambda{\bf R} , i.e., {\bf R}_{0}=\lambda{\bf R} . On one hand, this model extends the stochastic homogeneous model by introducing an unknown power scaling factor \lambda between the test and training signals. On the other hand, it can be considered as a generalization of the standard partially homogeneous model to the stochastic Bayesian framework, which treats the covariance matrix as a random matrix. According to the stochastic partially homogeneous model, a scale-invariant generalized likelihood ratio test (GLRT) for the adaptive signal detection is developed, which is a knowledge-aided version of the well-known adaptive coherence estimator (ACE). The resulting knowledge-aided ACE (KA-ACE) employs a colored loading step utilizing the a priori knowledge and the sample covariance matrix. Various simulation results and comparison with respect to other detectors confirm the scale-invariance and the effectiveness of the KA-ACE.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2011.2107510</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2011-03, Vol.18 (3), p.193-196
issn 1070-9908
1558-2361
language eng
recordid cdi_crossref_primary_10_1109_LSP_2011_2107510
source IEEE Electronic Library (IEL)
subjects Adaptation model
Bayesian inference
Bayesian methods
Coherence
Covariance matrix
Detectors
Disturbances
Estimators
generalized likelihood ratio test
knowledge-aided
Likelihood ratio
Mathematical models
partially homogeneous model
Signal detection
Signal to noise ratio
Stochastic processes
Stochasticity
Studies
Training
title Knowledge-Aided Adaptive Coherence Estimator in Stochastic Partially Homogeneous Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge-Aided%20Adaptive%20Coherence%20Estimator%20in%20Stochastic%20Partially%20Homogeneous%20Environments&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Wang,%20Pu&rft.date=2011-03-01&rft.volume=18&rft.issue=3&rft.spage=193&rft.epage=196&rft.pages=193-196&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2011.2107510&rft_dat=%3Cproquest_RIE%3E861563869%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849328234&rft_id=info:pmid/&rft_ieee_id=5696739&rfr_iscdi=true