Image denoising using bivariate α-stable distributions in the complex wavelet domain

Recently, the dual-tree complex wavelet transform has been proposed as an analysis tool featuring near shift-invariance and improved directional selectivity compared to the standard wavelet transform. Within this framework, we describe a novel technique for removing noise from digital images. We des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2005-01, Vol.12 (1), p.17-20
Hauptverfasser: Achim, A., Kuruoglu, E.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 17
container_title IEEE signal processing letters
container_volume 12
creator Achim, A.
Kuruoglu, E.E.
description Recently, the dual-tree complex wavelet transform has been proposed as an analysis tool featuring near shift-invariance and improved directional selectivity compared to the standard wavelet transform. Within this framework, we describe a novel technique for removing noise from digital images. We design a bivariate maximum a posteriori estimator, which relies on the family of isotropic α-stable distributions. Using this relatively new statistical model we are able to better capture the heavy-tailed nature of the data as well as the interscale dependencies of wavelet coefficients. We test our algorithm for the Cauchy case, in comparison with several recently published methods. The simulation results show that our proposed technique achieves state-of-the-art performance in terms of root mean squared (RMS) error.
doi_str_mv 10.1109/LSP.2004.839692
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2004_839692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1369264</ieee_id><sourcerecordid>10_1109_LSP_2004_839692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-4bd45b65d1c989e1626e15c51ca96f3463c910cf4ef59f46e5101c57b37b13c83</originalsourceid><addsrcrecordid>eNpFkMtKAzEUhoMoWKtrF27yAtPmTC5NllLUFgoK2vWQZM7UyFzKJK36WL6Iz-TUCm7Of-C_LD5CroFNAJiZrp6fJjljYqK5USY_ISOQUmc5V3A6_GzGMmOYPicXMb4xxjRoOSLrZWM3SEtsuxBDu6G73-vC3vbBJqTfX1lM1tVDJsTUB7dLoWsjDS1Nr0h912xr_KDvdo81Jlp2jQ3tJTmrbB3x6k_HZH1_9zJfZKvHh-X8dpX5XEHKhCuFdEqW4I02CCpXCNJL8NaoigvFvQHmK4GVNJVQKIGBlzPHZw6413xMpsdd33cx9lgV2z40tv8sgBUHKsVApThQKY5UhsbNsREQ8T_NB08J_gMJKF-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Image denoising using bivariate α-stable distributions in the complex wavelet domain</title><source>IEEE Electronic Library (IEL)</source><creator>Achim, A. ; Kuruoglu, E.E.</creator><creatorcontrib>Achim, A. ; Kuruoglu, E.E.</creatorcontrib><description>Recently, the dual-tree complex wavelet transform has been proposed as an analysis tool featuring near shift-invariance and improved directional selectivity compared to the standard wavelet transform. Within this framework, we describe a novel technique for removing noise from digital images. We design a bivariate maximum a posteriori estimator, which relies on the family of isotropic α-stable distributions. Using this relatively new statistical model we are able to better capture the heavy-tailed nature of the data as well as the interscale dependencies of wavelet coefficients. We test our algorithm for the Cauchy case, in comparison with several recently published methods. The simulation results show that our proposed technique achieves state-of-the-art performance in terms of root mean squared (RMS) error.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2004.839692</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Alpha-stable distributions ; Bayesian methods ; bivariate models ; Image denoising ; MAP estimation ; Monte-Carlo methods ; Noise reduction ; Signal processing ; Signal processing algorithms ; Testing ; Wavelet analysis ; Wavelet coefficients ; Wavelet domain ; wavelet transform ; Wavelet transforms</subject><ispartof>IEEE signal processing letters, 2005-01, Vol.12 (1), p.17-20</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-4bd45b65d1c989e1626e15c51ca96f3463c910cf4ef59f46e5101c57b37b13c83</citedby><cites>FETCH-LOGICAL-c261t-4bd45b65d1c989e1626e15c51ca96f3463c910cf4ef59f46e5101c57b37b13c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1369264$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1369264$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Achim, A.</creatorcontrib><creatorcontrib>Kuruoglu, E.E.</creatorcontrib><title>Image denoising using bivariate α-stable distributions in the complex wavelet domain</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Recently, the dual-tree complex wavelet transform has been proposed as an analysis tool featuring near shift-invariance and improved directional selectivity compared to the standard wavelet transform. Within this framework, we describe a novel technique for removing noise from digital images. We design a bivariate maximum a posteriori estimator, which relies on the family of isotropic α-stable distributions. Using this relatively new statistical model we are able to better capture the heavy-tailed nature of the data as well as the interscale dependencies of wavelet coefficients. We test our algorithm for the Cauchy case, in comparison with several recently published methods. The simulation results show that our proposed technique achieves state-of-the-art performance in terms of root mean squared (RMS) error.</description><subject>Alpha-stable distributions</subject><subject>Bayesian methods</subject><subject>bivariate models</subject><subject>Image denoising</subject><subject>MAP estimation</subject><subject>Monte-Carlo methods</subject><subject>Noise reduction</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Testing</subject><subject>Wavelet analysis</subject><subject>Wavelet coefficients</subject><subject>Wavelet domain</subject><subject>wavelet transform</subject><subject>Wavelet transforms</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkMtKAzEUhoMoWKtrF27yAtPmTC5NllLUFgoK2vWQZM7UyFzKJK36WL6Iz-TUCm7Of-C_LD5CroFNAJiZrp6fJjljYqK5USY_ISOQUmc5V3A6_GzGMmOYPicXMb4xxjRoOSLrZWM3SEtsuxBDu6G73-vC3vbBJqTfX1lM1tVDJsTUB7dLoWsjDS1Nr0h912xr_KDvdo81Jlp2jQ3tJTmrbB3x6k_HZH1_9zJfZKvHh-X8dpX5XEHKhCuFdEqW4I02CCpXCNJL8NaoigvFvQHmK4GVNJVQKIGBlzPHZw6413xMpsdd33cx9lgV2z40tv8sgBUHKsVApThQKY5UhsbNsREQ8T_NB08J_gMJKF-o</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Achim, A.</creator><creator>Kuruoglu, E.E.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200501</creationdate><title>Image denoising using bivariate α-stable distributions in the complex wavelet domain</title><author>Achim, A. ; Kuruoglu, E.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-4bd45b65d1c989e1626e15c51ca96f3463c910cf4ef59f46e5101c57b37b13c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alpha-stable distributions</topic><topic>Bayesian methods</topic><topic>bivariate models</topic><topic>Image denoising</topic><topic>MAP estimation</topic><topic>Monte-Carlo methods</topic><topic>Noise reduction</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Testing</topic><topic>Wavelet analysis</topic><topic>Wavelet coefficients</topic><topic>Wavelet domain</topic><topic>wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achim, A.</creatorcontrib><creatorcontrib>Kuruoglu, E.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Achim, A.</au><au>Kuruoglu, E.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image denoising using bivariate α-stable distributions in the complex wavelet domain</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2005-01</date><risdate>2005</risdate><volume>12</volume><issue>1</issue><spage>17</spage><epage>20</epage><pages>17-20</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Recently, the dual-tree complex wavelet transform has been proposed as an analysis tool featuring near shift-invariance and improved directional selectivity compared to the standard wavelet transform. Within this framework, we describe a novel technique for removing noise from digital images. We design a bivariate maximum a posteriori estimator, which relies on the family of isotropic α-stable distributions. Using this relatively new statistical model we are able to better capture the heavy-tailed nature of the data as well as the interscale dependencies of wavelet coefficients. We test our algorithm for the Cauchy case, in comparison with several recently published methods. The simulation results show that our proposed technique achieves state-of-the-art performance in terms of root mean squared (RMS) error.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2004.839692</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2005-01, Vol.12 (1), p.17-20
issn 1070-9908
1558-2361
language eng
recordid cdi_crossref_primary_10_1109_LSP_2004_839692
source IEEE Electronic Library (IEL)
subjects Alpha-stable distributions
Bayesian methods
bivariate models
Image denoising
MAP estimation
Monte-Carlo methods
Noise reduction
Signal processing
Signal processing algorithms
Testing
Wavelet analysis
Wavelet coefficients
Wavelet domain
wavelet transform
Wavelet transforms
title Image denoising using bivariate α-stable distributions in the complex wavelet domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20denoising%20using%20bivariate%20%CE%B1-stable%20distributions%20in%20the%20complex%20wavelet%20domain&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Achim,%20A.&rft.date=2005-01&rft.volume=12&rft.issue=1&rft.spage=17&rft.epage=20&rft.pages=17-20&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2004.839692&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2004_839692%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1369264&rfr_iscdi=true