Image denoising using bivariate α-stable distributions in the complex wavelet domain
Recently, the dual-tree complex wavelet transform has been proposed as an analysis tool featuring near shift-invariance and improved directional selectivity compared to the standard wavelet transform. Within this framework, we describe a novel technique for removing noise from digital images. We des...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2005-01, Vol.12 (1), p.17-20 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | IEEE signal processing letters |
container_volume | 12 |
creator | Achim, A. Kuruoglu, E.E. |
description | Recently, the dual-tree complex wavelet transform has been proposed as an analysis tool featuring near shift-invariance and improved directional selectivity compared to the standard wavelet transform. Within this framework, we describe a novel technique for removing noise from digital images. We design a bivariate maximum a posteriori estimator, which relies on the family of isotropic α-stable distributions. Using this relatively new statistical model we are able to better capture the heavy-tailed nature of the data as well as the interscale dependencies of wavelet coefficients. We test our algorithm for the Cauchy case, in comparison with several recently published methods. The simulation results show that our proposed technique achieves state-of-the-art performance in terms of root mean squared (RMS) error. |
doi_str_mv | 10.1109/LSP.2004.839692 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2004_839692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1369264</ieee_id><sourcerecordid>10_1109_LSP_2004_839692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-4bd45b65d1c989e1626e15c51ca96f3463c910cf4ef59f46e5101c57b37b13c83</originalsourceid><addsrcrecordid>eNpFkMtKAzEUhoMoWKtrF27yAtPmTC5NllLUFgoK2vWQZM7UyFzKJK36WL6Iz-TUCm7Of-C_LD5CroFNAJiZrp6fJjljYqK5USY_ISOQUmc5V3A6_GzGMmOYPicXMb4xxjRoOSLrZWM3SEtsuxBDu6G73-vC3vbBJqTfX1lM1tVDJsTUB7dLoWsjDS1Nr0h912xr_KDvdo81Jlp2jQ3tJTmrbB3x6k_HZH1_9zJfZKvHh-X8dpX5XEHKhCuFdEqW4I02CCpXCNJL8NaoigvFvQHmK4GVNJVQKIGBlzPHZw6413xMpsdd33cx9lgV2z40tv8sgBUHKsVApThQKY5UhsbNsREQ8T_NB08J_gMJKF-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Image denoising using bivariate α-stable distributions in the complex wavelet domain</title><source>IEEE Electronic Library (IEL)</source><creator>Achim, A. ; Kuruoglu, E.E.</creator><creatorcontrib>Achim, A. ; Kuruoglu, E.E.</creatorcontrib><description>Recently, the dual-tree complex wavelet transform has been proposed as an analysis tool featuring near shift-invariance and improved directional selectivity compared to the standard wavelet transform. Within this framework, we describe a novel technique for removing noise from digital images. We design a bivariate maximum a posteriori estimator, which relies on the family of isotropic α-stable distributions. Using this relatively new statistical model we are able to better capture the heavy-tailed nature of the data as well as the interscale dependencies of wavelet coefficients. We test our algorithm for the Cauchy case, in comparison with several recently published methods. The simulation results show that our proposed technique achieves state-of-the-art performance in terms of root mean squared (RMS) error.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2004.839692</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Alpha-stable distributions ; Bayesian methods ; bivariate models ; Image denoising ; MAP estimation ; Monte-Carlo methods ; Noise reduction ; Signal processing ; Signal processing algorithms ; Testing ; Wavelet analysis ; Wavelet coefficients ; Wavelet domain ; wavelet transform ; Wavelet transforms</subject><ispartof>IEEE signal processing letters, 2005-01, Vol.12 (1), p.17-20</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-4bd45b65d1c989e1626e15c51ca96f3463c910cf4ef59f46e5101c57b37b13c83</citedby><cites>FETCH-LOGICAL-c261t-4bd45b65d1c989e1626e15c51ca96f3463c910cf4ef59f46e5101c57b37b13c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1369264$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1369264$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Achim, A.</creatorcontrib><creatorcontrib>Kuruoglu, E.E.</creatorcontrib><title>Image denoising using bivariate α-stable distributions in the complex wavelet domain</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Recently, the dual-tree complex wavelet transform has been proposed as an analysis tool featuring near shift-invariance and improved directional selectivity compared to the standard wavelet transform. Within this framework, we describe a novel technique for removing noise from digital images. We design a bivariate maximum a posteriori estimator, which relies on the family of isotropic α-stable distributions. Using this relatively new statistical model we are able to better capture the heavy-tailed nature of the data as well as the interscale dependencies of wavelet coefficients. We test our algorithm for the Cauchy case, in comparison with several recently published methods. The simulation results show that our proposed technique achieves state-of-the-art performance in terms of root mean squared (RMS) error.</description><subject>Alpha-stable distributions</subject><subject>Bayesian methods</subject><subject>bivariate models</subject><subject>Image denoising</subject><subject>MAP estimation</subject><subject>Monte-Carlo methods</subject><subject>Noise reduction</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Testing</subject><subject>Wavelet analysis</subject><subject>Wavelet coefficients</subject><subject>Wavelet domain</subject><subject>wavelet transform</subject><subject>Wavelet transforms</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkMtKAzEUhoMoWKtrF27yAtPmTC5NllLUFgoK2vWQZM7UyFzKJK36WL6Iz-TUCm7Of-C_LD5CroFNAJiZrp6fJjljYqK5USY_ISOQUmc5V3A6_GzGMmOYPicXMb4xxjRoOSLrZWM3SEtsuxBDu6G73-vC3vbBJqTfX1lM1tVDJsTUB7dLoWsjDS1Nr0h912xr_KDvdo81Jlp2jQ3tJTmrbB3x6k_HZH1_9zJfZKvHh-X8dpX5XEHKhCuFdEqW4I02CCpXCNJL8NaoigvFvQHmK4GVNJVQKIGBlzPHZw6413xMpsdd33cx9lgV2z40tv8sgBUHKsVApThQKY5UhsbNsREQ8T_NB08J_gMJKF-o</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Achim, A.</creator><creator>Kuruoglu, E.E.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200501</creationdate><title>Image denoising using bivariate α-stable distributions in the complex wavelet domain</title><author>Achim, A. ; Kuruoglu, E.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-4bd45b65d1c989e1626e15c51ca96f3463c910cf4ef59f46e5101c57b37b13c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alpha-stable distributions</topic><topic>Bayesian methods</topic><topic>bivariate models</topic><topic>Image denoising</topic><topic>MAP estimation</topic><topic>Monte-Carlo methods</topic><topic>Noise reduction</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Testing</topic><topic>Wavelet analysis</topic><topic>Wavelet coefficients</topic><topic>Wavelet domain</topic><topic>wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achim, A.</creatorcontrib><creatorcontrib>Kuruoglu, E.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Achim, A.</au><au>Kuruoglu, E.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image denoising using bivariate α-stable distributions in the complex wavelet domain</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2005-01</date><risdate>2005</risdate><volume>12</volume><issue>1</issue><spage>17</spage><epage>20</epage><pages>17-20</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Recently, the dual-tree complex wavelet transform has been proposed as an analysis tool featuring near shift-invariance and improved directional selectivity compared to the standard wavelet transform. Within this framework, we describe a novel technique for removing noise from digital images. We design a bivariate maximum a posteriori estimator, which relies on the family of isotropic α-stable distributions. Using this relatively new statistical model we are able to better capture the heavy-tailed nature of the data as well as the interscale dependencies of wavelet coefficients. We test our algorithm for the Cauchy case, in comparison with several recently published methods. The simulation results show that our proposed technique achieves state-of-the-art performance in terms of root mean squared (RMS) error.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2004.839692</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2005-01, Vol.12 (1), p.17-20 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LSP_2004_839692 |
source | IEEE Electronic Library (IEL) |
subjects | Alpha-stable distributions Bayesian methods bivariate models Image denoising MAP estimation Monte-Carlo methods Noise reduction Signal processing Signal processing algorithms Testing Wavelet analysis Wavelet coefficients Wavelet domain wavelet transform Wavelet transforms |
title | Image denoising using bivariate α-stable distributions in the complex wavelet domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20denoising%20using%20bivariate%20%CE%B1-stable%20distributions%20in%20the%20complex%20wavelet%20domain&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Achim,%20A.&rft.date=2005-01&rft.volume=12&rft.issue=1&rft.spage=17&rft.epage=20&rft.pages=17-20&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2004.839692&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2004_839692%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1369264&rfr_iscdi=true |