Air Bubble Detection in Water Flow by Means of AI-Assisted Infrared Reflection System
This letter introduces an innovative, cost-effective solution for detecting air bubbles in water flow systems using an AI-assisted infrared reflection system. In industries, such as chemical, mechanical, oil, and nuclear, the presence of air bubbles in fluids can compromise both product quality and...
Gespeichert in:
Veröffentlicht in: | IEEE sensors letters 2024-10, Vol.8 (10), p.1-4 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | IEEE sensors letters |
container_volume | 8 |
creator | Moises, Ander Gracia Pascual, Ignacio Vitoria Gonzalez, Jose Javier Imas Ruiz-Zamarreno, Carlos |
description | This letter introduces an innovative, cost-effective solution for detecting air bubbles in water flow systems using an AI-assisted infrared reflection system. In industries, such as chemical, mechanical, oil, and nuclear, the presence of air bubbles in fluids can compromise both product quality and process efficiency. Our research develops a system that combines infrared optical sensors with machine learning algorithms to detect and quantify bubble presence effectively. The system's design utilizes infrared emitters and photodetectors arranged around a pipe to capture detailed data on bubble characteristics, which is then analyzed using a support vector machine (SVM) model to predict bubble concentrations. Experimental results demonstrate the system's ability to accurately identify different levels of bubble presence, offering significant improvements over existing methods. Key performance metrics include a mean squared error of 0.0694, a root mean squared error of 0.2634, and a coefficient of determination of 0.9765, indicating high accuracy and reliability. This approach not only enhances operational reliability and safety but also provides a scalable solution adaptable to various industrial settings. |
doi_str_mv | 10.1109/LSENS.2024.3419253 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSENS_2024_3419253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10572290</ieee_id><sourcerecordid>3102974630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177t-597686ba4c983dc8dba32e7d09115e46ce69a7a5e33f74de5099c6f4bbe30e2c3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNT-AfGw4Dl19iPZ7DHWVgtVwVo8LpvNBFLSpO6mlP57U9tDT_PCvM8MPITcMxgzBvppsZx-LMccuBwLyTSPxRUZcKniiEnFry_yLRmFsAYAlnIFAgZklVWePu_yvEb6gh26rmobWjX0x3bo6axu9zQ_0He0TaBtSbN5lIVQhQ4LOm9Kb30fvrCsz-Ty0K82d-SmtHXA0XkOyWo2_Z68RYvP1_kkW0SOKdVFsVZJmuRWOp2KwqVFbgVHVYBmLEaZOEy0VTZGIUolC4xBa5eUMs9RAHInhuTxdHfr298dhs6s251v-pdGMOBayURA3-KnlvNtCB5Ls_XVxvqDYWCOBs2_QXM0aM4Ge-jhBFWIeAHEinMN4g91iGu5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102974630</pqid></control><display><type>article</type><title>Air Bubble Detection in Water Flow by Means of AI-Assisted Infrared Reflection System</title><source>IEEE Electronic Library (IEL)</source><creator>Moises, Ander Gracia ; Pascual, Ignacio Vitoria ; Gonzalez, Jose Javier Imas ; Ruiz-Zamarreno, Carlos</creator><creatorcontrib>Moises, Ander Gracia ; Pascual, Ignacio Vitoria ; Gonzalez, Jose Javier Imas ; Ruiz-Zamarreno, Carlos</creatorcontrib><description>This letter introduces an innovative, cost-effective solution for detecting air bubbles in water flow systems using an AI-assisted infrared reflection system. In industries, such as chemical, mechanical, oil, and nuclear, the presence of air bubbles in fluids can compromise both product quality and process efficiency. Our research develops a system that combines infrared optical sensors with machine learning algorithms to detect and quantify bubble presence effectively. The system's design utilizes infrared emitters and photodetectors arranged around a pipe to capture detailed data on bubble characteristics, which is then analyzed using a support vector machine (SVM) model to predict bubble concentrations. Experimental results demonstrate the system's ability to accurately identify different levels of bubble presence, offering significant improvements over existing methods. Key performance metrics include a mean squared error of 0.0694, a root mean squared error of 0.2634, and a coefficient of determination of 0.9765, indicating high accuracy and reliability. This approach not only enhances operational reliability and safety but also provides a scalable solution adaptable to various industrial settings.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2024.3419253</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air bubbles ; Algorithms ; artificial intelligence ; bubble detection ; Data models ; Electromagnetic wave sensors ; Emitters ; Fluids ; Infrared analysis ; Infrared detectors ; Infrared reflection ; Machine learning ; Nuclear safety ; Optical measuring instruments ; Performance measurement ; Photodetectors ; Predictive models ; principal component analysis (PCA) ; Reliability ; Sensors ; support vector machine (SVM) ; Support vector machines ; Water flow</subject><ispartof>IEEE sensors letters, 2024-10, Vol.8 (10), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c177t-597686ba4c983dc8dba32e7d09115e46ce69a7a5e33f74de5099c6f4bbe30e2c3</cites><orcidid>0000-0002-0606-406X ; 0009-0000-8443-0101 ; 0000-0001-6601-5449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10572290$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10572290$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moises, Ander Gracia</creatorcontrib><creatorcontrib>Pascual, Ignacio Vitoria</creatorcontrib><creatorcontrib>Gonzalez, Jose Javier Imas</creatorcontrib><creatorcontrib>Ruiz-Zamarreno, Carlos</creatorcontrib><title>Air Bubble Detection in Water Flow by Means of AI-Assisted Infrared Reflection System</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>This letter introduces an innovative, cost-effective solution for detecting air bubbles in water flow systems using an AI-assisted infrared reflection system. In industries, such as chemical, mechanical, oil, and nuclear, the presence of air bubbles in fluids can compromise both product quality and process efficiency. Our research develops a system that combines infrared optical sensors with machine learning algorithms to detect and quantify bubble presence effectively. The system's design utilizes infrared emitters and photodetectors arranged around a pipe to capture detailed data on bubble characteristics, which is then analyzed using a support vector machine (SVM) model to predict bubble concentrations. Experimental results demonstrate the system's ability to accurately identify different levels of bubble presence, offering significant improvements over existing methods. Key performance metrics include a mean squared error of 0.0694, a root mean squared error of 0.2634, and a coefficient of determination of 0.9765, indicating high accuracy and reliability. This approach not only enhances operational reliability and safety but also provides a scalable solution adaptable to various industrial settings.</description><subject>Air bubbles</subject><subject>Algorithms</subject><subject>artificial intelligence</subject><subject>bubble detection</subject><subject>Data models</subject><subject>Electromagnetic wave sensors</subject><subject>Emitters</subject><subject>Fluids</subject><subject>Infrared analysis</subject><subject>Infrared detectors</subject><subject>Infrared reflection</subject><subject>Machine learning</subject><subject>Nuclear safety</subject><subject>Optical measuring instruments</subject><subject>Performance measurement</subject><subject>Photodetectors</subject><subject>Predictive models</subject><subject>principal component analysis (PCA)</subject><subject>Reliability</subject><subject>Sensors</subject><subject>support vector machine (SVM)</subject><subject>Support vector machines</subject><subject>Water flow</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsNT-AfGw4Dl19iPZ7DHWVgtVwVo8LpvNBFLSpO6mlP57U9tDT_PCvM8MPITcMxgzBvppsZx-LMccuBwLyTSPxRUZcKniiEnFry_yLRmFsAYAlnIFAgZklVWePu_yvEb6gh26rmobWjX0x3bo6axu9zQ_0He0TaBtSbN5lIVQhQ4LOm9Kb30fvrCsz-Ty0K82d-SmtHXA0XkOyWo2_Z68RYvP1_kkW0SOKdVFsVZJmuRWOp2KwqVFbgVHVYBmLEaZOEy0VTZGIUolC4xBa5eUMs9RAHInhuTxdHfr298dhs6s251v-pdGMOBayURA3-KnlvNtCB5Ls_XVxvqDYWCOBs2_QXM0aM4Ge-jhBFWIeAHEinMN4g91iGu5</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Moises, Ander Gracia</creator><creator>Pascual, Ignacio Vitoria</creator><creator>Gonzalez, Jose Javier Imas</creator><creator>Ruiz-Zamarreno, Carlos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0606-406X</orcidid><orcidid>https://orcid.org/0009-0000-8443-0101</orcidid><orcidid>https://orcid.org/0000-0001-6601-5449</orcidid></search><sort><creationdate>20241001</creationdate><title>Air Bubble Detection in Water Flow by Means of AI-Assisted Infrared Reflection System</title><author>Moises, Ander Gracia ; Pascual, Ignacio Vitoria ; Gonzalez, Jose Javier Imas ; Ruiz-Zamarreno, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177t-597686ba4c983dc8dba32e7d09115e46ce69a7a5e33f74de5099c6f4bbe30e2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air bubbles</topic><topic>Algorithms</topic><topic>artificial intelligence</topic><topic>bubble detection</topic><topic>Data models</topic><topic>Electromagnetic wave sensors</topic><topic>Emitters</topic><topic>Fluids</topic><topic>Infrared analysis</topic><topic>Infrared detectors</topic><topic>Infrared reflection</topic><topic>Machine learning</topic><topic>Nuclear safety</topic><topic>Optical measuring instruments</topic><topic>Performance measurement</topic><topic>Photodetectors</topic><topic>Predictive models</topic><topic>principal component analysis (PCA)</topic><topic>Reliability</topic><topic>Sensors</topic><topic>support vector machine (SVM)</topic><topic>Support vector machines</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moises, Ander Gracia</creatorcontrib><creatorcontrib>Pascual, Ignacio Vitoria</creatorcontrib><creatorcontrib>Gonzalez, Jose Javier Imas</creatorcontrib><creatorcontrib>Ruiz-Zamarreno, Carlos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moises, Ander Gracia</au><au>Pascual, Ignacio Vitoria</au><au>Gonzalez, Jose Javier Imas</au><au>Ruiz-Zamarreno, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air Bubble Detection in Water Flow by Means of AI-Assisted Infrared Reflection System</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>8</volume><issue>10</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>This letter introduces an innovative, cost-effective solution for detecting air bubbles in water flow systems using an AI-assisted infrared reflection system. In industries, such as chemical, mechanical, oil, and nuclear, the presence of air bubbles in fluids can compromise both product quality and process efficiency. Our research develops a system that combines infrared optical sensors with machine learning algorithms to detect and quantify bubble presence effectively. The system's design utilizes infrared emitters and photodetectors arranged around a pipe to capture detailed data on bubble characteristics, which is then analyzed using a support vector machine (SVM) model to predict bubble concentrations. Experimental results demonstrate the system's ability to accurately identify different levels of bubble presence, offering significant improvements over existing methods. Key performance metrics include a mean squared error of 0.0694, a root mean squared error of 0.2634, and a coefficient of determination of 0.9765, indicating high accuracy and reliability. This approach not only enhances operational reliability and safety but also provides a scalable solution adaptable to various industrial settings.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2024.3419253</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-0606-406X</orcidid><orcidid>https://orcid.org/0009-0000-8443-0101</orcidid><orcidid>https://orcid.org/0000-0001-6601-5449</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1472 |
ispartof | IEEE sensors letters, 2024-10, Vol.8 (10), p.1-4 |
issn | 2475-1472 2475-1472 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LSENS_2024_3419253 |
source | IEEE Electronic Library (IEL) |
subjects | Air bubbles Algorithms artificial intelligence bubble detection Data models Electromagnetic wave sensors Emitters Fluids Infrared analysis Infrared detectors Infrared reflection Machine learning Nuclear safety Optical measuring instruments Performance measurement Photodetectors Predictive models principal component analysis (PCA) Reliability Sensors support vector machine (SVM) Support vector machines Water flow |
title | Air Bubble Detection in Water Flow by Means of AI-Assisted Infrared Reflection System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air%20Bubble%20Detection%20in%20Water%20Flow%20by%20Means%20of%20AI-Assisted%20Infrared%20Reflection%20System&rft.jtitle=IEEE%20sensors%20letters&rft.au=Moises,%20Ander%20Gracia&rft.date=2024-10-01&rft.volume=8&rft.issue=10&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2024.3419253&rft_dat=%3Cproquest_RIE%3E3102974630%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102974630&rft_id=info:pmid/&rft_ieee_id=10572290&rfr_iscdi=true |