Air Bubble Detection in Water Flow by Means of AI-Assisted Infrared Reflection System

This letter introduces an innovative, cost-effective solution for detecting air bubbles in water flow systems using an AI-assisted infrared reflection system. In industries, such as chemical, mechanical, oil, and nuclear, the presence of air bubbles in fluids can compromise both product quality and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors letters 2024-10, Vol.8 (10), p.1-4
Hauptverfasser: Moises, Ander Gracia, Pascual, Ignacio Vitoria, Gonzalez, Jose Javier Imas, Ruiz-Zamarreno, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 10
container_start_page 1
container_title IEEE sensors letters
container_volume 8
creator Moises, Ander Gracia
Pascual, Ignacio Vitoria
Gonzalez, Jose Javier Imas
Ruiz-Zamarreno, Carlos
description This letter introduces an innovative, cost-effective solution for detecting air bubbles in water flow systems using an AI-assisted infrared reflection system. In industries, such as chemical, mechanical, oil, and nuclear, the presence of air bubbles in fluids can compromise both product quality and process efficiency. Our research develops a system that combines infrared optical sensors with machine learning algorithms to detect and quantify bubble presence effectively. The system's design utilizes infrared emitters and photodetectors arranged around a pipe to capture detailed data on bubble characteristics, which is then analyzed using a support vector machine (SVM) model to predict bubble concentrations. Experimental results demonstrate the system's ability to accurately identify different levels of bubble presence, offering significant improvements over existing methods. Key performance metrics include a mean squared error of 0.0694, a root mean squared error of 0.2634, and a coefficient of determination of 0.9765, indicating high accuracy and reliability. This approach not only enhances operational reliability and safety but also provides a scalable solution adaptable to various industrial settings.
doi_str_mv 10.1109/LSENS.2024.3419253
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSENS_2024_3419253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10572290</ieee_id><sourcerecordid>3102974630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177t-597686ba4c983dc8dba32e7d09115e46ce69a7a5e33f74de5099c6f4bbe30e2c3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNT-AfGw4Dl19iPZ7DHWVgtVwVo8LpvNBFLSpO6mlP57U9tDT_PCvM8MPITcMxgzBvppsZx-LMccuBwLyTSPxRUZcKniiEnFry_yLRmFsAYAlnIFAgZklVWePu_yvEb6gh26rmobWjX0x3bo6axu9zQ_0He0TaBtSbN5lIVQhQ4LOm9Kb30fvrCsz-Ty0K82d-SmtHXA0XkOyWo2_Z68RYvP1_kkW0SOKdVFsVZJmuRWOp2KwqVFbgVHVYBmLEaZOEy0VTZGIUolC4xBa5eUMs9RAHInhuTxdHfr298dhs6s251v-pdGMOBayURA3-KnlvNtCB5Ls_XVxvqDYWCOBs2_QXM0aM4Ge-jhBFWIeAHEinMN4g91iGu5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102974630</pqid></control><display><type>article</type><title>Air Bubble Detection in Water Flow by Means of AI-Assisted Infrared Reflection System</title><source>IEEE Electronic Library (IEL)</source><creator>Moises, Ander Gracia ; Pascual, Ignacio Vitoria ; Gonzalez, Jose Javier Imas ; Ruiz-Zamarreno, Carlos</creator><creatorcontrib>Moises, Ander Gracia ; Pascual, Ignacio Vitoria ; Gonzalez, Jose Javier Imas ; Ruiz-Zamarreno, Carlos</creatorcontrib><description>This letter introduces an innovative, cost-effective solution for detecting air bubbles in water flow systems using an AI-assisted infrared reflection system. In industries, such as chemical, mechanical, oil, and nuclear, the presence of air bubbles in fluids can compromise both product quality and process efficiency. Our research develops a system that combines infrared optical sensors with machine learning algorithms to detect and quantify bubble presence effectively. The system's design utilizes infrared emitters and photodetectors arranged around a pipe to capture detailed data on bubble characteristics, which is then analyzed using a support vector machine (SVM) model to predict bubble concentrations. Experimental results demonstrate the system's ability to accurately identify different levels of bubble presence, offering significant improvements over existing methods. Key performance metrics include a mean squared error of 0.0694, a root mean squared error of 0.2634, and a coefficient of determination of 0.9765, indicating high accuracy and reliability. This approach not only enhances operational reliability and safety but also provides a scalable solution adaptable to various industrial settings.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2024.3419253</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air bubbles ; Algorithms ; artificial intelligence ; bubble detection ; Data models ; Electromagnetic wave sensors ; Emitters ; Fluids ; Infrared analysis ; Infrared detectors ; Infrared reflection ; Machine learning ; Nuclear safety ; Optical measuring instruments ; Performance measurement ; Photodetectors ; Predictive models ; principal component analysis (PCA) ; Reliability ; Sensors ; support vector machine (SVM) ; Support vector machines ; Water flow</subject><ispartof>IEEE sensors letters, 2024-10, Vol.8 (10), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c177t-597686ba4c983dc8dba32e7d09115e46ce69a7a5e33f74de5099c6f4bbe30e2c3</cites><orcidid>0000-0002-0606-406X ; 0009-0000-8443-0101 ; 0000-0001-6601-5449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10572290$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10572290$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moises, Ander Gracia</creatorcontrib><creatorcontrib>Pascual, Ignacio Vitoria</creatorcontrib><creatorcontrib>Gonzalez, Jose Javier Imas</creatorcontrib><creatorcontrib>Ruiz-Zamarreno, Carlos</creatorcontrib><title>Air Bubble Detection in Water Flow by Means of AI-Assisted Infrared Reflection System</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>This letter introduces an innovative, cost-effective solution for detecting air bubbles in water flow systems using an AI-assisted infrared reflection system. In industries, such as chemical, mechanical, oil, and nuclear, the presence of air bubbles in fluids can compromise both product quality and process efficiency. Our research develops a system that combines infrared optical sensors with machine learning algorithms to detect and quantify bubble presence effectively. The system's design utilizes infrared emitters and photodetectors arranged around a pipe to capture detailed data on bubble characteristics, which is then analyzed using a support vector machine (SVM) model to predict bubble concentrations. Experimental results demonstrate the system's ability to accurately identify different levels of bubble presence, offering significant improvements over existing methods. Key performance metrics include a mean squared error of 0.0694, a root mean squared error of 0.2634, and a coefficient of determination of 0.9765, indicating high accuracy and reliability. This approach not only enhances operational reliability and safety but also provides a scalable solution adaptable to various industrial settings.</description><subject>Air bubbles</subject><subject>Algorithms</subject><subject>artificial intelligence</subject><subject>bubble detection</subject><subject>Data models</subject><subject>Electromagnetic wave sensors</subject><subject>Emitters</subject><subject>Fluids</subject><subject>Infrared analysis</subject><subject>Infrared detectors</subject><subject>Infrared reflection</subject><subject>Machine learning</subject><subject>Nuclear safety</subject><subject>Optical measuring instruments</subject><subject>Performance measurement</subject><subject>Photodetectors</subject><subject>Predictive models</subject><subject>principal component analysis (PCA)</subject><subject>Reliability</subject><subject>Sensors</subject><subject>support vector machine (SVM)</subject><subject>Support vector machines</subject><subject>Water flow</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsNT-AfGw4Dl19iPZ7DHWVgtVwVo8LpvNBFLSpO6mlP57U9tDT_PCvM8MPITcMxgzBvppsZx-LMccuBwLyTSPxRUZcKniiEnFry_yLRmFsAYAlnIFAgZklVWePu_yvEb6gh26rmobWjX0x3bo6axu9zQ_0He0TaBtSbN5lIVQhQ4LOm9Kb30fvrCsz-Ty0K82d-SmtHXA0XkOyWo2_Z68RYvP1_kkW0SOKdVFsVZJmuRWOp2KwqVFbgVHVYBmLEaZOEy0VTZGIUolC4xBa5eUMs9RAHInhuTxdHfr298dhs6s251v-pdGMOBayURA3-KnlvNtCB5Ls_XVxvqDYWCOBs2_QXM0aM4Ge-jhBFWIeAHEinMN4g91iGu5</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Moises, Ander Gracia</creator><creator>Pascual, Ignacio Vitoria</creator><creator>Gonzalez, Jose Javier Imas</creator><creator>Ruiz-Zamarreno, Carlos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0606-406X</orcidid><orcidid>https://orcid.org/0009-0000-8443-0101</orcidid><orcidid>https://orcid.org/0000-0001-6601-5449</orcidid></search><sort><creationdate>20241001</creationdate><title>Air Bubble Detection in Water Flow by Means of AI-Assisted Infrared Reflection System</title><author>Moises, Ander Gracia ; Pascual, Ignacio Vitoria ; Gonzalez, Jose Javier Imas ; Ruiz-Zamarreno, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177t-597686ba4c983dc8dba32e7d09115e46ce69a7a5e33f74de5099c6f4bbe30e2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air bubbles</topic><topic>Algorithms</topic><topic>artificial intelligence</topic><topic>bubble detection</topic><topic>Data models</topic><topic>Electromagnetic wave sensors</topic><topic>Emitters</topic><topic>Fluids</topic><topic>Infrared analysis</topic><topic>Infrared detectors</topic><topic>Infrared reflection</topic><topic>Machine learning</topic><topic>Nuclear safety</topic><topic>Optical measuring instruments</topic><topic>Performance measurement</topic><topic>Photodetectors</topic><topic>Predictive models</topic><topic>principal component analysis (PCA)</topic><topic>Reliability</topic><topic>Sensors</topic><topic>support vector machine (SVM)</topic><topic>Support vector machines</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moises, Ander Gracia</creatorcontrib><creatorcontrib>Pascual, Ignacio Vitoria</creatorcontrib><creatorcontrib>Gonzalez, Jose Javier Imas</creatorcontrib><creatorcontrib>Ruiz-Zamarreno, Carlos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moises, Ander Gracia</au><au>Pascual, Ignacio Vitoria</au><au>Gonzalez, Jose Javier Imas</au><au>Ruiz-Zamarreno, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air Bubble Detection in Water Flow by Means of AI-Assisted Infrared Reflection System</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>8</volume><issue>10</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>This letter introduces an innovative, cost-effective solution for detecting air bubbles in water flow systems using an AI-assisted infrared reflection system. In industries, such as chemical, mechanical, oil, and nuclear, the presence of air bubbles in fluids can compromise both product quality and process efficiency. Our research develops a system that combines infrared optical sensors with machine learning algorithms to detect and quantify bubble presence effectively. The system's design utilizes infrared emitters and photodetectors arranged around a pipe to capture detailed data on bubble characteristics, which is then analyzed using a support vector machine (SVM) model to predict bubble concentrations. Experimental results demonstrate the system's ability to accurately identify different levels of bubble presence, offering significant improvements over existing methods. Key performance metrics include a mean squared error of 0.0694, a root mean squared error of 0.2634, and a coefficient of determination of 0.9765, indicating high accuracy and reliability. This approach not only enhances operational reliability and safety but also provides a scalable solution adaptable to various industrial settings.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2024.3419253</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-0606-406X</orcidid><orcidid>https://orcid.org/0009-0000-8443-0101</orcidid><orcidid>https://orcid.org/0000-0001-6601-5449</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1472
ispartof IEEE sensors letters, 2024-10, Vol.8 (10), p.1-4
issn 2475-1472
2475-1472
language eng
recordid cdi_crossref_primary_10_1109_LSENS_2024_3419253
source IEEE Electronic Library (IEL)
subjects Air bubbles
Algorithms
artificial intelligence
bubble detection
Data models
Electromagnetic wave sensors
Emitters
Fluids
Infrared analysis
Infrared detectors
Infrared reflection
Machine learning
Nuclear safety
Optical measuring instruments
Performance measurement
Photodetectors
Predictive models
principal component analysis (PCA)
Reliability
Sensors
support vector machine (SVM)
Support vector machines
Water flow
title Air Bubble Detection in Water Flow by Means of AI-Assisted Infrared Reflection System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air%20Bubble%20Detection%20in%20Water%20Flow%20by%20Means%20of%20AI-Assisted%20Infrared%20Reflection%20System&rft.jtitle=IEEE%20sensors%20letters&rft.au=Moises,%20Ander%20Gracia&rft.date=2024-10-01&rft.volume=8&rft.issue=10&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2024.3419253&rft_dat=%3Cproquest_RIE%3E3102974630%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102974630&rft_id=info:pmid/&rft_ieee_id=10572290&rfr_iscdi=true