Detecting Microstate Transition in Human Brain via Eigenspace of Spatiotemporal Graph

In this letter, a novel approach for detecting the transition of electroencephalography (EEG) microstates of the human brain has been proposed. We have considered the EEG electrodes as nodes of a graph and the correlation between the electrodes' signals as the edge weights. Then, using spectral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors letters 2023-05, Vol.7 (5), p.1-4
Hauptverfasser: Dev, Raghav, Kumar, Sandeep, Gandhi, Tapan Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 5
container_start_page 1
container_title IEEE sensors letters
container_volume 7
creator Dev, Raghav
Kumar, Sandeep
Gandhi, Tapan Kumar
description In this letter, a novel approach for detecting the transition of electroencephalography (EEG) microstates of the human brain has been proposed. We have considered the EEG electrodes as nodes of a graph and the correlation between the electrodes' signals as the edge weights. Then, using spectral analysis of the graph, a method has been proposed for detecting the transition of the microstates. The proposed method is comprised of two steps. First, a spatiotemporal graph is constructed using the correlation between the Laplacian of the spatial graph at consecutive time instants. Then, using the principal angles of the eigenspace of the graph, the transition of the EEG microstate has been detected. Experimental results on two publicly available datasets show that the proposed method performs more accurately than state-of-the-art. On the first dataset for the 15 out of 20 subjects, the spatiotemporal graph approach improved the accuracy of detecting the transition time. On the second dataset, it missed only two transitions as opposed to the spatial graph, which failed to detect overall ten transitions across all the subjects.
doi_str_mv 10.1109/LSENS.2023.3269672
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSENS_2023_3269672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10109170</ieee_id><sourcerecordid>2808836004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-6377179357a1c7c3c8c589cf7ad57b430c06850d93c1c7109628e2100eaec1a43</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxRujiQT5AsZDE8_gtN3ddo-KCCaoB-Dc1DKLJbC7tsXEb29XOHCal8x78-dHyC2DEWNQPswXk_fFiAMXI8GLspD8gvR4JvMhyyS_PNPXZBDCFgCY4hIE9MjqGSPa6OoNfXPWNyGaiHTpTR1cdE1NXU1nh72p6ZM3Sf84Qydug3VojUXaVHTRmmSMuG8bb3Z06k37dUOuKrMLODjVPlm9TJbj2XD-MX0dP86HNp0Uh4WQkslS5NIwK62wyuaqtJU061x-ZgIsFCqHdSls6qdXC66QMwA0aJnJRJ_cH-e2vvk-YIh62xx8nVZqrkApUQB0Ln50df8Fj5Vuvdsb_6sZ6I6g_ieoO4L6RDCF7o4hh4hngWRnCd0fSjpr4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808836004</pqid></control><display><type>article</type><title>Detecting Microstate Transition in Human Brain via Eigenspace of Spatiotemporal Graph</title><source>IEEE Electronic Library (IEL)</source><creator>Dev, Raghav ; Kumar, Sandeep ; Gandhi, Tapan Kumar</creator><creatorcontrib>Dev, Raghav ; Kumar, Sandeep ; Gandhi, Tapan Kumar</creatorcontrib><description>In this letter, a novel approach for detecting the transition of electroencephalography (EEG) microstates of the human brain has been proposed. We have considered the EEG electrodes as nodes of a graph and the correlation between the electrodes' signals as the edge weights. Then, using spectral analysis of the graph, a method has been proposed for detecting the transition of the microstates. The proposed method is comprised of two steps. First, a spatiotemporal graph is constructed using the correlation between the Laplacian of the spatial graph at consecutive time instants. Then, using the principal angles of the eigenspace of the graph, the transition of the EEG microstate has been detected. Experimental results on two publicly available datasets show that the proposed method performs more accurately than state-of-the-art. On the first dataset for the 15 out of 20 subjects, the spatiotemporal graph approach improved the accuracy of detecting the transition time. On the second dataset, it missed only two transitions as opposed to the spatial graph, which failed to detect overall ten transitions across all the subjects.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2023.3269672</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Brain ; Correlation ; Datasets ; Electrodes ; Electroencephalography ; electroencepholography (EEG) microstates ; graph signal processing ; Heuristic algorithms ; human brain ; invariant spaces ; Laplace equations ; Sensor signal processing ; Signal processing algorithms ; Spatiotemporal phenomena ; Spectrum analysis</subject><ispartof>IEEE sensors letters, 2023-05, Vol.7 (5), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-6377179357a1c7c3c8c589cf7ad57b430c06850d93c1c7109628e2100eaec1a43</cites><orcidid>0000-0001-5037-2396 ; 0000-0002-3532-9389 ; 0000-0003-0415-8625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10109170$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10109170$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dev, Raghav</creatorcontrib><creatorcontrib>Kumar, Sandeep</creatorcontrib><creatorcontrib>Gandhi, Tapan Kumar</creatorcontrib><title>Detecting Microstate Transition in Human Brain via Eigenspace of Spatiotemporal Graph</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>In this letter, a novel approach for detecting the transition of electroencephalography (EEG) microstates of the human brain has been proposed. We have considered the EEG electrodes as nodes of a graph and the correlation between the electrodes' signals as the edge weights. Then, using spectral analysis of the graph, a method has been proposed for detecting the transition of the microstates. The proposed method is comprised of two steps. First, a spatiotemporal graph is constructed using the correlation between the Laplacian of the spatial graph at consecutive time instants. Then, using the principal angles of the eigenspace of the graph, the transition of the EEG microstate has been detected. Experimental results on two publicly available datasets show that the proposed method performs more accurately than state-of-the-art. On the first dataset for the 15 out of 20 subjects, the spatiotemporal graph approach improved the accuracy of detecting the transition time. On the second dataset, it missed only two transitions as opposed to the spatial graph, which failed to detect overall ten transitions across all the subjects.</description><subject>Brain</subject><subject>Correlation</subject><subject>Datasets</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>electroencepholography (EEG) microstates</subject><subject>graph signal processing</subject><subject>Heuristic algorithms</subject><subject>human brain</subject><subject>invariant spaces</subject><subject>Laplace equations</subject><subject>Sensor signal processing</subject><subject>Signal processing algorithms</subject><subject>Spatiotemporal phenomena</subject><subject>Spectrum analysis</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PAjEQxRujiQT5AsZDE8_gtN3ddo-KCCaoB-Dc1DKLJbC7tsXEb29XOHCal8x78-dHyC2DEWNQPswXk_fFiAMXI8GLspD8gvR4JvMhyyS_PNPXZBDCFgCY4hIE9MjqGSPa6OoNfXPWNyGaiHTpTR1cdE1NXU1nh72p6ZM3Sf84Qydug3VojUXaVHTRmmSMuG8bb3Z06k37dUOuKrMLODjVPlm9TJbj2XD-MX0dP86HNp0Uh4WQkslS5NIwK62wyuaqtJU061x-ZgIsFCqHdSls6qdXC66QMwA0aJnJRJ_cH-e2vvk-YIh62xx8nVZqrkApUQB0Ln50df8Fj5Vuvdsb_6sZ6I6g_ieoO4L6RDCF7o4hh4hngWRnCd0fSjpr4Q</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Dev, Raghav</creator><creator>Kumar, Sandeep</creator><creator>Gandhi, Tapan Kumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5037-2396</orcidid><orcidid>https://orcid.org/0000-0002-3532-9389</orcidid><orcidid>https://orcid.org/0000-0003-0415-8625</orcidid></search><sort><creationdate>20230501</creationdate><title>Detecting Microstate Transition in Human Brain via Eigenspace of Spatiotemporal Graph</title><author>Dev, Raghav ; Kumar, Sandeep ; Gandhi, Tapan Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-6377179357a1c7c3c8c589cf7ad57b430c06850d93c1c7109628e2100eaec1a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brain</topic><topic>Correlation</topic><topic>Datasets</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>electroencepholography (EEG) microstates</topic><topic>graph signal processing</topic><topic>Heuristic algorithms</topic><topic>human brain</topic><topic>invariant spaces</topic><topic>Laplace equations</topic><topic>Sensor signal processing</topic><topic>Signal processing algorithms</topic><topic>Spatiotemporal phenomena</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dev, Raghav</creatorcontrib><creatorcontrib>Kumar, Sandeep</creatorcontrib><creatorcontrib>Gandhi, Tapan Kumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dev, Raghav</au><au>Kumar, Sandeep</au><au>Gandhi, Tapan Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Microstate Transition in Human Brain via Eigenspace of Spatiotemporal Graph</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>7</volume><issue>5</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>In this letter, a novel approach for detecting the transition of electroencephalography (EEG) microstates of the human brain has been proposed. We have considered the EEG electrodes as nodes of a graph and the correlation between the electrodes' signals as the edge weights. Then, using spectral analysis of the graph, a method has been proposed for detecting the transition of the microstates. The proposed method is comprised of two steps. First, a spatiotemporal graph is constructed using the correlation between the Laplacian of the spatial graph at consecutive time instants. Then, using the principal angles of the eigenspace of the graph, the transition of the EEG microstate has been detected. Experimental results on two publicly available datasets show that the proposed method performs more accurately than state-of-the-art. On the first dataset for the 15 out of 20 subjects, the spatiotemporal graph approach improved the accuracy of detecting the transition time. On the second dataset, it missed only two transitions as opposed to the spatial graph, which failed to detect overall ten transitions across all the subjects.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2023.3269672</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5037-2396</orcidid><orcidid>https://orcid.org/0000-0002-3532-9389</orcidid><orcidid>https://orcid.org/0000-0003-0415-8625</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1472
ispartof IEEE sensors letters, 2023-05, Vol.7 (5), p.1-4
issn 2475-1472
2475-1472
language eng
recordid cdi_crossref_primary_10_1109_LSENS_2023_3269672
source IEEE Electronic Library (IEL)
subjects Brain
Correlation
Datasets
Electrodes
Electroencephalography
electroencepholography (EEG) microstates
graph signal processing
Heuristic algorithms
human brain
invariant spaces
Laplace equations
Sensor signal processing
Signal processing algorithms
Spatiotemporal phenomena
Spectrum analysis
title Detecting Microstate Transition in Human Brain via Eigenspace of Spatiotemporal Graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Microstate%20Transition%20in%20Human%20Brain%20via%20Eigenspace%20of%20Spatiotemporal%20Graph&rft.jtitle=IEEE%20sensors%20letters&rft.au=Dev,%20Raghav&rft.date=2023-05-01&rft.volume=7&rft.issue=5&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2023.3269672&rft_dat=%3Cproquest_RIE%3E2808836004%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808836004&rft_id=info:pmid/&rft_ieee_id=10109170&rfr_iscdi=true