Detecting Microstate Transition in Human Brain via Eigenspace of Spatiotemporal Graph
In this letter, a novel approach for detecting the transition of electroencephalography (EEG) microstates of the human brain has been proposed. We have considered the EEG electrodes as nodes of a graph and the correlation between the electrodes' signals as the edge weights. Then, using spectral...
Gespeichert in:
Veröffentlicht in: | IEEE sensors letters 2023-05, Vol.7 (5), p.1-4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE sensors letters |
container_volume | 7 |
creator | Dev, Raghav Kumar, Sandeep Gandhi, Tapan Kumar |
description | In this letter, a novel approach for detecting the transition of electroencephalography (EEG) microstates of the human brain has been proposed. We have considered the EEG electrodes as nodes of a graph and the correlation between the electrodes' signals as the edge weights. Then, using spectral analysis of the graph, a method has been proposed for detecting the transition of the microstates. The proposed method is comprised of two steps. First, a spatiotemporal graph is constructed using the correlation between the Laplacian of the spatial graph at consecutive time instants. Then, using the principal angles of the eigenspace of the graph, the transition of the EEG microstate has been detected. Experimental results on two publicly available datasets show that the proposed method performs more accurately than state-of-the-art. On the first dataset for the 15 out of 20 subjects, the spatiotemporal graph approach improved the accuracy of detecting the transition time. On the second dataset, it missed only two transitions as opposed to the spatial graph, which failed to detect overall ten transitions across all the subjects. |
doi_str_mv | 10.1109/LSENS.2023.3269672 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSENS_2023_3269672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10109170</ieee_id><sourcerecordid>2808836004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-6377179357a1c7c3c8c589cf7ad57b430c06850d93c1c7109628e2100eaec1a43</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxRujiQT5AsZDE8_gtN3ddo-KCCaoB-Dc1DKLJbC7tsXEb29XOHCal8x78-dHyC2DEWNQPswXk_fFiAMXI8GLspD8gvR4JvMhyyS_PNPXZBDCFgCY4hIE9MjqGSPa6OoNfXPWNyGaiHTpTR1cdE1NXU1nh72p6ZM3Sf84Qydug3VojUXaVHTRmmSMuG8bb3Z06k37dUOuKrMLODjVPlm9TJbj2XD-MX0dP86HNp0Uh4WQkslS5NIwK62wyuaqtJU061x-ZgIsFCqHdSls6qdXC66QMwA0aJnJRJ_cH-e2vvk-YIh62xx8nVZqrkApUQB0Ln50df8Fj5Vuvdsb_6sZ6I6g_ieoO4L6RDCF7o4hh4hngWRnCd0fSjpr4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808836004</pqid></control><display><type>article</type><title>Detecting Microstate Transition in Human Brain via Eigenspace of Spatiotemporal Graph</title><source>IEEE Electronic Library (IEL)</source><creator>Dev, Raghav ; Kumar, Sandeep ; Gandhi, Tapan Kumar</creator><creatorcontrib>Dev, Raghav ; Kumar, Sandeep ; Gandhi, Tapan Kumar</creatorcontrib><description>In this letter, a novel approach for detecting the transition of electroencephalography (EEG) microstates of the human brain has been proposed. We have considered the EEG electrodes as nodes of a graph and the correlation between the electrodes' signals as the edge weights. Then, using spectral analysis of the graph, a method has been proposed for detecting the transition of the microstates. The proposed method is comprised of two steps. First, a spatiotemporal graph is constructed using the correlation between the Laplacian of the spatial graph at consecutive time instants. Then, using the principal angles of the eigenspace of the graph, the transition of the EEG microstate has been detected. Experimental results on two publicly available datasets show that the proposed method performs more accurately than state-of-the-art. On the first dataset for the 15 out of 20 subjects, the spatiotemporal graph approach improved the accuracy of detecting the transition time. On the second dataset, it missed only two transitions as opposed to the spatial graph, which failed to detect overall ten transitions across all the subjects.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2023.3269672</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Brain ; Correlation ; Datasets ; Electrodes ; Electroencephalography ; electroencepholography (EEG) microstates ; graph signal processing ; Heuristic algorithms ; human brain ; invariant spaces ; Laplace equations ; Sensor signal processing ; Signal processing algorithms ; Spatiotemporal phenomena ; Spectrum analysis</subject><ispartof>IEEE sensors letters, 2023-05, Vol.7 (5), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-6377179357a1c7c3c8c589cf7ad57b430c06850d93c1c7109628e2100eaec1a43</cites><orcidid>0000-0001-5037-2396 ; 0000-0002-3532-9389 ; 0000-0003-0415-8625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10109170$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10109170$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dev, Raghav</creatorcontrib><creatorcontrib>Kumar, Sandeep</creatorcontrib><creatorcontrib>Gandhi, Tapan Kumar</creatorcontrib><title>Detecting Microstate Transition in Human Brain via Eigenspace of Spatiotemporal Graph</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>In this letter, a novel approach for detecting the transition of electroencephalography (EEG) microstates of the human brain has been proposed. We have considered the EEG electrodes as nodes of a graph and the correlation between the electrodes' signals as the edge weights. Then, using spectral analysis of the graph, a method has been proposed for detecting the transition of the microstates. The proposed method is comprised of two steps. First, a spatiotemporal graph is constructed using the correlation between the Laplacian of the spatial graph at consecutive time instants. Then, using the principal angles of the eigenspace of the graph, the transition of the EEG microstate has been detected. Experimental results on two publicly available datasets show that the proposed method performs more accurately than state-of-the-art. On the first dataset for the 15 out of 20 subjects, the spatiotemporal graph approach improved the accuracy of detecting the transition time. On the second dataset, it missed only two transitions as opposed to the spatial graph, which failed to detect overall ten transitions across all the subjects.</description><subject>Brain</subject><subject>Correlation</subject><subject>Datasets</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>electroencepholography (EEG) microstates</subject><subject>graph signal processing</subject><subject>Heuristic algorithms</subject><subject>human brain</subject><subject>invariant spaces</subject><subject>Laplace equations</subject><subject>Sensor signal processing</subject><subject>Signal processing algorithms</subject><subject>Spatiotemporal phenomena</subject><subject>Spectrum analysis</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PAjEQxRujiQT5AsZDE8_gtN3ddo-KCCaoB-Dc1DKLJbC7tsXEb29XOHCal8x78-dHyC2DEWNQPswXk_fFiAMXI8GLspD8gvR4JvMhyyS_PNPXZBDCFgCY4hIE9MjqGSPa6OoNfXPWNyGaiHTpTR1cdE1NXU1nh72p6ZM3Sf84Qydug3VojUXaVHTRmmSMuG8bb3Z06k37dUOuKrMLODjVPlm9TJbj2XD-MX0dP86HNp0Uh4WQkslS5NIwK62wyuaqtJU061x-ZgIsFCqHdSls6qdXC66QMwA0aJnJRJ_cH-e2vvk-YIh62xx8nVZqrkApUQB0Ln50df8Fj5Vuvdsb_6sZ6I6g_ieoO4L6RDCF7o4hh4hngWRnCd0fSjpr4Q</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Dev, Raghav</creator><creator>Kumar, Sandeep</creator><creator>Gandhi, Tapan Kumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5037-2396</orcidid><orcidid>https://orcid.org/0000-0002-3532-9389</orcidid><orcidid>https://orcid.org/0000-0003-0415-8625</orcidid></search><sort><creationdate>20230501</creationdate><title>Detecting Microstate Transition in Human Brain via Eigenspace of Spatiotemporal Graph</title><author>Dev, Raghav ; Kumar, Sandeep ; Gandhi, Tapan Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-6377179357a1c7c3c8c589cf7ad57b430c06850d93c1c7109628e2100eaec1a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brain</topic><topic>Correlation</topic><topic>Datasets</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>electroencepholography (EEG) microstates</topic><topic>graph signal processing</topic><topic>Heuristic algorithms</topic><topic>human brain</topic><topic>invariant spaces</topic><topic>Laplace equations</topic><topic>Sensor signal processing</topic><topic>Signal processing algorithms</topic><topic>Spatiotemporal phenomena</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dev, Raghav</creatorcontrib><creatorcontrib>Kumar, Sandeep</creatorcontrib><creatorcontrib>Gandhi, Tapan Kumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dev, Raghav</au><au>Kumar, Sandeep</au><au>Gandhi, Tapan Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Microstate Transition in Human Brain via Eigenspace of Spatiotemporal Graph</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>7</volume><issue>5</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>In this letter, a novel approach for detecting the transition of electroencephalography (EEG) microstates of the human brain has been proposed. We have considered the EEG electrodes as nodes of a graph and the correlation between the electrodes' signals as the edge weights. Then, using spectral analysis of the graph, a method has been proposed for detecting the transition of the microstates. The proposed method is comprised of two steps. First, a spatiotemporal graph is constructed using the correlation between the Laplacian of the spatial graph at consecutive time instants. Then, using the principal angles of the eigenspace of the graph, the transition of the EEG microstate has been detected. Experimental results on two publicly available datasets show that the proposed method performs more accurately than state-of-the-art. On the first dataset for the 15 out of 20 subjects, the spatiotemporal graph approach improved the accuracy of detecting the transition time. On the second dataset, it missed only two transitions as opposed to the spatial graph, which failed to detect overall ten transitions across all the subjects.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2023.3269672</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5037-2396</orcidid><orcidid>https://orcid.org/0000-0002-3532-9389</orcidid><orcidid>https://orcid.org/0000-0003-0415-8625</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1472 |
ispartof | IEEE sensors letters, 2023-05, Vol.7 (5), p.1-4 |
issn | 2475-1472 2475-1472 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LSENS_2023_3269672 |
source | IEEE Electronic Library (IEL) |
subjects | Brain Correlation Datasets Electrodes Electroencephalography electroencepholography (EEG) microstates graph signal processing Heuristic algorithms human brain invariant spaces Laplace equations Sensor signal processing Signal processing algorithms Spatiotemporal phenomena Spectrum analysis |
title | Detecting Microstate Transition in Human Brain via Eigenspace of Spatiotemporal Graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Microstate%20Transition%20in%20Human%20Brain%20via%20Eigenspace%20of%20Spatiotemporal%20Graph&rft.jtitle=IEEE%20sensors%20letters&rft.au=Dev,%20Raghav&rft.date=2023-05-01&rft.volume=7&rft.issue=5&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2023.3269672&rft_dat=%3Cproquest_RIE%3E2808836004%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808836004&rft_id=info:pmid/&rft_ieee_id=10109170&rfr_iscdi=true |