Data-Selective Least Squares Methods for Elliptic Localization With NLOS Mitigation
In this letter, we consider the problem of 2-D elliptic localization, where multiple spatially separated sensors, including the transmitters and receivers, are exploited to locate the signal reflecting/relaying target in the mixed line-of-sight/nonline-of-sight (NLOS) environments. We begin by revis...
Gespeichert in:
Veröffentlicht in: | IEEE sensors letters 2021-07, Vol.5 (7), p.1-4 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | IEEE sensors letters |
container_volume | 5 |
creator | Xiong, Wenxin Bordoy, Joan Schindelhauer, Christian Gabbrielli, Andrea Fischer, Georg Schott, Dominik Jan Hoeflinger, Fabian Rupitsch, Stefan Johann So, Hing Cheung |
description | In this letter, we consider the problem of 2-D elliptic localization, where multiple spatially separated sensors, including the transmitters and receivers, are exploited to locate the signal reflecting/relaying target in the mixed line-of-sight/nonline-of-sight (NLOS) environments. We begin by revisiting a plain closed-form linear least squares (LS) solution. As it is vulnerable to the existence of erroneous time-sum-of-arrival (TSOA) measurements under the NLOS conditions, we then devise two new data-selective LS methods, by which the outliers can be identified and mitigated and a higher level of resistance to the NLOS bias errors can be provided. To conduct data selection, the first algorithm combines the use of the traditional linear LS estimator and an additional cost function, whereas the second relies on the parameterization of the TSOA-defined ellipses and follows a nonlinear LS estimation criterion. Based on the simulations, we demonstrate the effectiveness of the proposed methods in NLOS error mitigation at acceptable computational costs. |
doi_str_mv | 10.1109/LSENS.2021.3087422 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSENS_2021_3087422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9448484</ieee_id><sourcerecordid>2544298757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a31454f4f93620a2a04df72c80550e2db66da78274d929e6aa7f61d9faa4e08e3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWLR_QC8Bz1uT2exmc5RaP2DbHlbxGOLuxKas3TZJBf31bj8QmcMMw_vOOzyEXHE24pyp27KazKoRMOCjlBVSAJyQAQiZJVxIOP03n5NhCEvGGC9AspQNSHVvokkqbLGO7gtpiSZEWm22xmOgU4yLrgnUdp5O2tato6tp2dWmdT8mum5F31xc0Fk5r-jURfexX16SM2vagMNjvyCvD5OX8VNSzh-fx3dlUoPKYmJSLjJhhVVpDsyAYaKxEuqCZRlDaN7zvDGyf1Q0ChTmxkib80ZZYwSyAtMLcnO4u_bdZosh6mW39as-UkMmBKhCZrJXwUFV-y4Ej1avvfs0_ltzpnf89J6f3vHTR3696fpgcoj4Z1BCFH2lv7ina0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544298757</pqid></control><display><type>article</type><title>Data-Selective Least Squares Methods for Elliptic Localization With NLOS Mitigation</title><source>IEEE Electronic Library Online</source><creator>Xiong, Wenxin ; Bordoy, Joan ; Schindelhauer, Christian ; Gabbrielli, Andrea ; Fischer, Georg ; Schott, Dominik Jan ; Hoeflinger, Fabian ; Rupitsch, Stefan Johann ; So, Hing Cheung</creator><creatorcontrib>Xiong, Wenxin ; Bordoy, Joan ; Schindelhauer, Christian ; Gabbrielli, Andrea ; Fischer, Georg ; Schott, Dominik Jan ; Hoeflinger, Fabian ; Rupitsch, Stefan Johann ; So, Hing Cheung</creatorcontrib><description>In this letter, we consider the problem of 2-D elliptic localization, where multiple spatially separated sensors, including the transmitters and receivers, are exploited to locate the signal reflecting/relaying target in the mixed line-of-sight/nonline-of-sight (NLOS) environments. We begin by revisiting a plain closed-form linear least squares (LS) solution. As it is vulnerable to the existence of erroneous time-sum-of-arrival (TSOA) measurements under the NLOS conditions, we then devise two new data-selective LS methods, by which the outliers can be identified and mitigated and a higher level of resistance to the NLOS bias errors can be provided. To conduct data selection, the first algorithm combines the use of the traditional linear LS estimator and an additional cost function, whereas the second relies on the parameterization of the TSOA-defined ellipses and follows a nonlinear LS estimation criterion. Based on the simulations, we demonstrate the effectiveness of the proposed methods in NLOS error mitigation at acceptable computational costs.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2021.3087422</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cost function ; data selection ; elliptic localization ; Estimation ; Least squares ; least squares (LS) ; Localization ; Location awareness ; nonline-of-sight (NLOS) ; Outliers (statistics) ; Parameterization ; Receivers ; Resistance ; Sensor signal processing ; Signal processing algorithms ; Transmitters</subject><ispartof>IEEE sensors letters, 2021-07, Vol.5 (7), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a31454f4f93620a2a04df72c80550e2db66da78274d929e6aa7f61d9faa4e08e3</citedby><cites>FETCH-LOGICAL-c295t-a31454f4f93620a2a04df72c80550e2db66da78274d929e6aa7f61d9faa4e08e3</cites><orcidid>0000-0003-1460-1061 ; 0000-0002-8320-8581 ; 0000-0002-3167-760X ; 0000-0001-5877-1439 ; 0000-0002-0869-4604 ; 0000-0002-4806-9838 ; 0000-0001-8530-1053 ; 0000-0003-3575-6513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9448484$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9448484$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiong, Wenxin</creatorcontrib><creatorcontrib>Bordoy, Joan</creatorcontrib><creatorcontrib>Schindelhauer, Christian</creatorcontrib><creatorcontrib>Gabbrielli, Andrea</creatorcontrib><creatorcontrib>Fischer, Georg</creatorcontrib><creatorcontrib>Schott, Dominik Jan</creatorcontrib><creatorcontrib>Hoeflinger, Fabian</creatorcontrib><creatorcontrib>Rupitsch, Stefan Johann</creatorcontrib><creatorcontrib>So, Hing Cheung</creatorcontrib><title>Data-Selective Least Squares Methods for Elliptic Localization With NLOS Mitigation</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>In this letter, we consider the problem of 2-D elliptic localization, where multiple spatially separated sensors, including the transmitters and receivers, are exploited to locate the signal reflecting/relaying target in the mixed line-of-sight/nonline-of-sight (NLOS) environments. We begin by revisiting a plain closed-form linear least squares (LS) solution. As it is vulnerable to the existence of erroneous time-sum-of-arrival (TSOA) measurements under the NLOS conditions, we then devise two new data-selective LS methods, by which the outliers can be identified and mitigated and a higher level of resistance to the NLOS bias errors can be provided. To conduct data selection, the first algorithm combines the use of the traditional linear LS estimator and an additional cost function, whereas the second relies on the parameterization of the TSOA-defined ellipses and follows a nonlinear LS estimation criterion. Based on the simulations, we demonstrate the effectiveness of the proposed methods in NLOS error mitigation at acceptable computational costs.</description><subject>Algorithms</subject><subject>Cost function</subject><subject>data selection</subject><subject>elliptic localization</subject><subject>Estimation</subject><subject>Least squares</subject><subject>least squares (LS)</subject><subject>Localization</subject><subject>Location awareness</subject><subject>nonline-of-sight (NLOS)</subject><subject>Outliers (statistics)</subject><subject>Parameterization</subject><subject>Receivers</subject><subject>Resistance</subject><subject>Sensor signal processing</subject><subject>Signal processing algorithms</subject><subject>Transmitters</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWLR_QC8Bz1uT2exmc5RaP2DbHlbxGOLuxKas3TZJBf31bj8QmcMMw_vOOzyEXHE24pyp27KazKoRMOCjlBVSAJyQAQiZJVxIOP03n5NhCEvGGC9AspQNSHVvokkqbLGO7gtpiSZEWm22xmOgU4yLrgnUdp5O2tato6tp2dWmdT8mum5F31xc0Fk5r-jURfexX16SM2vagMNjvyCvD5OX8VNSzh-fx3dlUoPKYmJSLjJhhVVpDsyAYaKxEuqCZRlDaN7zvDGyf1Q0ChTmxkib80ZZYwSyAtMLcnO4u_bdZosh6mW39as-UkMmBKhCZrJXwUFV-y4Ej1avvfs0_ltzpnf89J6f3vHTR3696fpgcoj4Z1BCFH2lv7ina0k</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Xiong, Wenxin</creator><creator>Bordoy, Joan</creator><creator>Schindelhauer, Christian</creator><creator>Gabbrielli, Andrea</creator><creator>Fischer, Georg</creator><creator>Schott, Dominik Jan</creator><creator>Hoeflinger, Fabian</creator><creator>Rupitsch, Stefan Johann</creator><creator>So, Hing Cheung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1460-1061</orcidid><orcidid>https://orcid.org/0000-0002-8320-8581</orcidid><orcidid>https://orcid.org/0000-0002-3167-760X</orcidid><orcidid>https://orcid.org/0000-0001-5877-1439</orcidid><orcidid>https://orcid.org/0000-0002-0869-4604</orcidid><orcidid>https://orcid.org/0000-0002-4806-9838</orcidid><orcidid>https://orcid.org/0000-0001-8530-1053</orcidid><orcidid>https://orcid.org/0000-0003-3575-6513</orcidid></search><sort><creationdate>20210701</creationdate><title>Data-Selective Least Squares Methods for Elliptic Localization With NLOS Mitigation</title><author>Xiong, Wenxin ; Bordoy, Joan ; Schindelhauer, Christian ; Gabbrielli, Andrea ; Fischer, Georg ; Schott, Dominik Jan ; Hoeflinger, Fabian ; Rupitsch, Stefan Johann ; So, Hing Cheung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a31454f4f93620a2a04df72c80550e2db66da78274d929e6aa7f61d9faa4e08e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cost function</topic><topic>data selection</topic><topic>elliptic localization</topic><topic>Estimation</topic><topic>Least squares</topic><topic>least squares (LS)</topic><topic>Localization</topic><topic>Location awareness</topic><topic>nonline-of-sight (NLOS)</topic><topic>Outliers (statistics)</topic><topic>Parameterization</topic><topic>Receivers</topic><topic>Resistance</topic><topic>Sensor signal processing</topic><topic>Signal processing algorithms</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Wenxin</creatorcontrib><creatorcontrib>Bordoy, Joan</creatorcontrib><creatorcontrib>Schindelhauer, Christian</creatorcontrib><creatorcontrib>Gabbrielli, Andrea</creatorcontrib><creatorcontrib>Fischer, Georg</creatorcontrib><creatorcontrib>Schott, Dominik Jan</creatorcontrib><creatorcontrib>Hoeflinger, Fabian</creatorcontrib><creatorcontrib>Rupitsch, Stefan Johann</creatorcontrib><creatorcontrib>So, Hing Cheung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiong, Wenxin</au><au>Bordoy, Joan</au><au>Schindelhauer, Christian</au><au>Gabbrielli, Andrea</au><au>Fischer, Georg</au><au>Schott, Dominik Jan</au><au>Hoeflinger, Fabian</au><au>Rupitsch, Stefan Johann</au><au>So, Hing Cheung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Selective Least Squares Methods for Elliptic Localization With NLOS Mitigation</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>5</volume><issue>7</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>In this letter, we consider the problem of 2-D elliptic localization, where multiple spatially separated sensors, including the transmitters and receivers, are exploited to locate the signal reflecting/relaying target in the mixed line-of-sight/nonline-of-sight (NLOS) environments. We begin by revisiting a plain closed-form linear least squares (LS) solution. As it is vulnerable to the existence of erroneous time-sum-of-arrival (TSOA) measurements under the NLOS conditions, we then devise two new data-selective LS methods, by which the outliers can be identified and mitigated and a higher level of resistance to the NLOS bias errors can be provided. To conduct data selection, the first algorithm combines the use of the traditional linear LS estimator and an additional cost function, whereas the second relies on the parameterization of the TSOA-defined ellipses and follows a nonlinear LS estimation criterion. Based on the simulations, we demonstrate the effectiveness of the proposed methods in NLOS error mitigation at acceptable computational costs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2021.3087422</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-1460-1061</orcidid><orcidid>https://orcid.org/0000-0002-8320-8581</orcidid><orcidid>https://orcid.org/0000-0002-3167-760X</orcidid><orcidid>https://orcid.org/0000-0001-5877-1439</orcidid><orcidid>https://orcid.org/0000-0002-0869-4604</orcidid><orcidid>https://orcid.org/0000-0002-4806-9838</orcidid><orcidid>https://orcid.org/0000-0001-8530-1053</orcidid><orcidid>https://orcid.org/0000-0003-3575-6513</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1472 |
ispartof | IEEE sensors letters, 2021-07, Vol.5 (7), p.1-4 |
issn | 2475-1472 2475-1472 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LSENS_2021_3087422 |
source | IEEE Electronic Library Online |
subjects | Algorithms Cost function data selection elliptic localization Estimation Least squares least squares (LS) Localization Location awareness nonline-of-sight (NLOS) Outliers (statistics) Parameterization Receivers Resistance Sensor signal processing Signal processing algorithms Transmitters |
title | Data-Selective Least Squares Methods for Elliptic Localization With NLOS Mitigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Selective%20Least%20Squares%20Methods%20for%20Elliptic%20Localization%20With%20NLOS%20Mitigation&rft.jtitle=IEEE%20sensors%20letters&rft.au=Xiong,%20Wenxin&rft.date=2021-07-01&rft.volume=5&rft.issue=7&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2021.3087422&rft_dat=%3Cproquest_RIE%3E2544298757%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544298757&rft_id=info:pmid/&rft_ieee_id=9448484&rfr_iscdi=true |