Data-Selective Least Squares Methods for Elliptic Localization With NLOS Mitigation

In this letter, we consider the problem of 2-D elliptic localization, where multiple spatially separated sensors, including the transmitters and receivers, are exploited to locate the signal reflecting/relaying target in the mixed line-of-sight/nonline-of-sight (NLOS) environments. We begin by revis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors letters 2021-07, Vol.5 (7), p.1-4
Hauptverfasser: Xiong, Wenxin, Bordoy, Joan, Schindelhauer, Christian, Gabbrielli, Andrea, Fischer, Georg, Schott, Dominik Jan, Hoeflinger, Fabian, Rupitsch, Stefan Johann, So, Hing Cheung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 7
container_start_page 1
container_title IEEE sensors letters
container_volume 5
creator Xiong, Wenxin
Bordoy, Joan
Schindelhauer, Christian
Gabbrielli, Andrea
Fischer, Georg
Schott, Dominik Jan
Hoeflinger, Fabian
Rupitsch, Stefan Johann
So, Hing Cheung
description In this letter, we consider the problem of 2-D elliptic localization, where multiple spatially separated sensors, including the transmitters and receivers, are exploited to locate the signal reflecting/relaying target in the mixed line-of-sight/nonline-of-sight (NLOS) environments. We begin by revisiting a plain closed-form linear least squares (LS) solution. As it is vulnerable to the existence of erroneous time-sum-of-arrival (TSOA) measurements under the NLOS conditions, we then devise two new data-selective LS methods, by which the outliers can be identified and mitigated and a higher level of resistance to the NLOS bias errors can be provided. To conduct data selection, the first algorithm combines the use of the traditional linear LS estimator and an additional cost function, whereas the second relies on the parameterization of the TSOA-defined ellipses and follows a nonlinear LS estimation criterion. Based on the simulations, we demonstrate the effectiveness of the proposed methods in NLOS error mitigation at acceptable computational costs.
doi_str_mv 10.1109/LSENS.2021.3087422
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSENS_2021_3087422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9448484</ieee_id><sourcerecordid>2544298757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a31454f4f93620a2a04df72c80550e2db66da78274d929e6aa7f61d9faa4e08e3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWLR_QC8Bz1uT2exmc5RaP2DbHlbxGOLuxKas3TZJBf31bj8QmcMMw_vOOzyEXHE24pyp27KazKoRMOCjlBVSAJyQAQiZJVxIOP03n5NhCEvGGC9AspQNSHVvokkqbLGO7gtpiSZEWm22xmOgU4yLrgnUdp5O2tato6tp2dWmdT8mum5F31xc0Fk5r-jURfexX16SM2vagMNjvyCvD5OX8VNSzh-fx3dlUoPKYmJSLjJhhVVpDsyAYaKxEuqCZRlDaN7zvDGyf1Q0ChTmxkib80ZZYwSyAtMLcnO4u_bdZosh6mW39as-UkMmBKhCZrJXwUFV-y4Ej1avvfs0_ltzpnf89J6f3vHTR3696fpgcoj4Z1BCFH2lv7ina0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544298757</pqid></control><display><type>article</type><title>Data-Selective Least Squares Methods for Elliptic Localization With NLOS Mitigation</title><source>IEEE Electronic Library Online</source><creator>Xiong, Wenxin ; Bordoy, Joan ; Schindelhauer, Christian ; Gabbrielli, Andrea ; Fischer, Georg ; Schott, Dominik Jan ; Hoeflinger, Fabian ; Rupitsch, Stefan Johann ; So, Hing Cheung</creator><creatorcontrib>Xiong, Wenxin ; Bordoy, Joan ; Schindelhauer, Christian ; Gabbrielli, Andrea ; Fischer, Georg ; Schott, Dominik Jan ; Hoeflinger, Fabian ; Rupitsch, Stefan Johann ; So, Hing Cheung</creatorcontrib><description>In this letter, we consider the problem of 2-D elliptic localization, where multiple spatially separated sensors, including the transmitters and receivers, are exploited to locate the signal reflecting/relaying target in the mixed line-of-sight/nonline-of-sight (NLOS) environments. We begin by revisiting a plain closed-form linear least squares (LS) solution. As it is vulnerable to the existence of erroneous time-sum-of-arrival (TSOA) measurements under the NLOS conditions, we then devise two new data-selective LS methods, by which the outliers can be identified and mitigated and a higher level of resistance to the NLOS bias errors can be provided. To conduct data selection, the first algorithm combines the use of the traditional linear LS estimator and an additional cost function, whereas the second relies on the parameterization of the TSOA-defined ellipses and follows a nonlinear LS estimation criterion. Based on the simulations, we demonstrate the effectiveness of the proposed methods in NLOS error mitigation at acceptable computational costs.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2021.3087422</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cost function ; data selection ; elliptic localization ; Estimation ; Least squares ; least squares (LS) ; Localization ; Location awareness ; nonline-of-sight (NLOS) ; Outliers (statistics) ; Parameterization ; Receivers ; Resistance ; Sensor signal processing ; Signal processing algorithms ; Transmitters</subject><ispartof>IEEE sensors letters, 2021-07, Vol.5 (7), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a31454f4f93620a2a04df72c80550e2db66da78274d929e6aa7f61d9faa4e08e3</citedby><cites>FETCH-LOGICAL-c295t-a31454f4f93620a2a04df72c80550e2db66da78274d929e6aa7f61d9faa4e08e3</cites><orcidid>0000-0003-1460-1061 ; 0000-0002-8320-8581 ; 0000-0002-3167-760X ; 0000-0001-5877-1439 ; 0000-0002-0869-4604 ; 0000-0002-4806-9838 ; 0000-0001-8530-1053 ; 0000-0003-3575-6513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9448484$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9448484$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiong, Wenxin</creatorcontrib><creatorcontrib>Bordoy, Joan</creatorcontrib><creatorcontrib>Schindelhauer, Christian</creatorcontrib><creatorcontrib>Gabbrielli, Andrea</creatorcontrib><creatorcontrib>Fischer, Georg</creatorcontrib><creatorcontrib>Schott, Dominik Jan</creatorcontrib><creatorcontrib>Hoeflinger, Fabian</creatorcontrib><creatorcontrib>Rupitsch, Stefan Johann</creatorcontrib><creatorcontrib>So, Hing Cheung</creatorcontrib><title>Data-Selective Least Squares Methods for Elliptic Localization With NLOS Mitigation</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>In this letter, we consider the problem of 2-D elliptic localization, where multiple spatially separated sensors, including the transmitters and receivers, are exploited to locate the signal reflecting/relaying target in the mixed line-of-sight/nonline-of-sight (NLOS) environments. We begin by revisiting a plain closed-form linear least squares (LS) solution. As it is vulnerable to the existence of erroneous time-sum-of-arrival (TSOA) measurements under the NLOS conditions, we then devise two new data-selective LS methods, by which the outliers can be identified and mitigated and a higher level of resistance to the NLOS bias errors can be provided. To conduct data selection, the first algorithm combines the use of the traditional linear LS estimator and an additional cost function, whereas the second relies on the parameterization of the TSOA-defined ellipses and follows a nonlinear LS estimation criterion. Based on the simulations, we demonstrate the effectiveness of the proposed methods in NLOS error mitigation at acceptable computational costs.</description><subject>Algorithms</subject><subject>Cost function</subject><subject>data selection</subject><subject>elliptic localization</subject><subject>Estimation</subject><subject>Least squares</subject><subject>least squares (LS)</subject><subject>Localization</subject><subject>Location awareness</subject><subject>nonline-of-sight (NLOS)</subject><subject>Outliers (statistics)</subject><subject>Parameterization</subject><subject>Receivers</subject><subject>Resistance</subject><subject>Sensor signal processing</subject><subject>Signal processing algorithms</subject><subject>Transmitters</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWLR_QC8Bz1uT2exmc5RaP2DbHlbxGOLuxKas3TZJBf31bj8QmcMMw_vOOzyEXHE24pyp27KazKoRMOCjlBVSAJyQAQiZJVxIOP03n5NhCEvGGC9AspQNSHVvokkqbLGO7gtpiSZEWm22xmOgU4yLrgnUdp5O2tato6tp2dWmdT8mum5F31xc0Fk5r-jURfexX16SM2vagMNjvyCvD5OX8VNSzh-fx3dlUoPKYmJSLjJhhVVpDsyAYaKxEuqCZRlDaN7zvDGyf1Q0ChTmxkib80ZZYwSyAtMLcnO4u_bdZosh6mW39as-UkMmBKhCZrJXwUFV-y4Ej1avvfs0_ltzpnf89J6f3vHTR3696fpgcoj4Z1BCFH2lv7ina0k</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Xiong, Wenxin</creator><creator>Bordoy, Joan</creator><creator>Schindelhauer, Christian</creator><creator>Gabbrielli, Andrea</creator><creator>Fischer, Georg</creator><creator>Schott, Dominik Jan</creator><creator>Hoeflinger, Fabian</creator><creator>Rupitsch, Stefan Johann</creator><creator>So, Hing Cheung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1460-1061</orcidid><orcidid>https://orcid.org/0000-0002-8320-8581</orcidid><orcidid>https://orcid.org/0000-0002-3167-760X</orcidid><orcidid>https://orcid.org/0000-0001-5877-1439</orcidid><orcidid>https://orcid.org/0000-0002-0869-4604</orcidid><orcidid>https://orcid.org/0000-0002-4806-9838</orcidid><orcidid>https://orcid.org/0000-0001-8530-1053</orcidid><orcidid>https://orcid.org/0000-0003-3575-6513</orcidid></search><sort><creationdate>20210701</creationdate><title>Data-Selective Least Squares Methods for Elliptic Localization With NLOS Mitigation</title><author>Xiong, Wenxin ; Bordoy, Joan ; Schindelhauer, Christian ; Gabbrielli, Andrea ; Fischer, Georg ; Schott, Dominik Jan ; Hoeflinger, Fabian ; Rupitsch, Stefan Johann ; So, Hing Cheung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a31454f4f93620a2a04df72c80550e2db66da78274d929e6aa7f61d9faa4e08e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cost function</topic><topic>data selection</topic><topic>elliptic localization</topic><topic>Estimation</topic><topic>Least squares</topic><topic>least squares (LS)</topic><topic>Localization</topic><topic>Location awareness</topic><topic>nonline-of-sight (NLOS)</topic><topic>Outliers (statistics)</topic><topic>Parameterization</topic><topic>Receivers</topic><topic>Resistance</topic><topic>Sensor signal processing</topic><topic>Signal processing algorithms</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Wenxin</creatorcontrib><creatorcontrib>Bordoy, Joan</creatorcontrib><creatorcontrib>Schindelhauer, Christian</creatorcontrib><creatorcontrib>Gabbrielli, Andrea</creatorcontrib><creatorcontrib>Fischer, Georg</creatorcontrib><creatorcontrib>Schott, Dominik Jan</creatorcontrib><creatorcontrib>Hoeflinger, Fabian</creatorcontrib><creatorcontrib>Rupitsch, Stefan Johann</creatorcontrib><creatorcontrib>So, Hing Cheung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiong, Wenxin</au><au>Bordoy, Joan</au><au>Schindelhauer, Christian</au><au>Gabbrielli, Andrea</au><au>Fischer, Georg</au><au>Schott, Dominik Jan</au><au>Hoeflinger, Fabian</au><au>Rupitsch, Stefan Johann</au><au>So, Hing Cheung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Selective Least Squares Methods for Elliptic Localization With NLOS Mitigation</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>5</volume><issue>7</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>In this letter, we consider the problem of 2-D elliptic localization, where multiple spatially separated sensors, including the transmitters and receivers, are exploited to locate the signal reflecting/relaying target in the mixed line-of-sight/nonline-of-sight (NLOS) environments. We begin by revisiting a plain closed-form linear least squares (LS) solution. As it is vulnerable to the existence of erroneous time-sum-of-arrival (TSOA) measurements under the NLOS conditions, we then devise two new data-selective LS methods, by which the outliers can be identified and mitigated and a higher level of resistance to the NLOS bias errors can be provided. To conduct data selection, the first algorithm combines the use of the traditional linear LS estimator and an additional cost function, whereas the second relies on the parameterization of the TSOA-defined ellipses and follows a nonlinear LS estimation criterion. Based on the simulations, we demonstrate the effectiveness of the proposed methods in NLOS error mitigation at acceptable computational costs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2021.3087422</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-1460-1061</orcidid><orcidid>https://orcid.org/0000-0002-8320-8581</orcidid><orcidid>https://orcid.org/0000-0002-3167-760X</orcidid><orcidid>https://orcid.org/0000-0001-5877-1439</orcidid><orcidid>https://orcid.org/0000-0002-0869-4604</orcidid><orcidid>https://orcid.org/0000-0002-4806-9838</orcidid><orcidid>https://orcid.org/0000-0001-8530-1053</orcidid><orcidid>https://orcid.org/0000-0003-3575-6513</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1472
ispartof IEEE sensors letters, 2021-07, Vol.5 (7), p.1-4
issn 2475-1472
2475-1472
language eng
recordid cdi_crossref_primary_10_1109_LSENS_2021_3087422
source IEEE Electronic Library Online
subjects Algorithms
Cost function
data selection
elliptic localization
Estimation
Least squares
least squares (LS)
Localization
Location awareness
nonline-of-sight (NLOS)
Outliers (statistics)
Parameterization
Receivers
Resistance
Sensor signal processing
Signal processing algorithms
Transmitters
title Data-Selective Least Squares Methods for Elliptic Localization With NLOS Mitigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Selective%20Least%20Squares%20Methods%20for%20Elliptic%20Localization%20With%20NLOS%20Mitigation&rft.jtitle=IEEE%20sensors%20letters&rft.au=Xiong,%20Wenxin&rft.date=2021-07-01&rft.volume=5&rft.issue=7&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2021.3087422&rft_dat=%3Cproquest_RIE%3E2544298757%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544298757&rft_id=info:pmid/&rft_ieee_id=9448484&rfr_iscdi=true