EfficientNet-EA for Visual Location Recognition in Natural Scenes

In natural scenarios, the visual location recognition often experiences reduced accuracy because of variations in weather, lighting, camera angles, and occlusions caused by dynamic objects. This paper introduces an EfficientNet-EA-based algorithm specifically designed to tackle these challenges. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2025-01, Vol.10 (1), p.596-603
Hauptverfasser: Zhang, Heng, Chen, Yanchao, Liu, Yanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 603
container_issue 1
container_start_page 596
container_title IEEE robotics and automation letters
container_volume 10
creator Zhang, Heng
Chen, Yanchao
Liu, Yanli
description In natural scenarios, the visual location recognition often experiences reduced accuracy because of variations in weather, lighting, camera angles, and occlusions caused by dynamic objects. This paper introduces an EfficientNet-EA-based algorithm specifically designed to tackle these challenges. The algorithm enhances its capabilities by appending the Efficient Feature Aggregation (EA) layer to the end of EfficientNet and by using MultiSimilarityLoss for training purposes. This design enhances the model's ability to extract features, thereby boosting efficiency and accuracy. During the training phase, the model adeptly identifies and utilizes hard-negative and challenging positive samples, which in turn enhances its training efficacy and generalizability across diverse situations. The experimental results indicate that EfficientNet-EA achieves a recall@10 of 98.6% on Pitts30k-test. The model demonstrates a certain degree of improvement in recognition rates under weather variations, changes in illumination, shifts in perspective, and the presence of dynamic object occlusions.
doi_str_mv 10.1109/LRA.2024.3511379
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2024_3511379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10777584</ieee_id><sourcerecordid>3143028560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-f07e610609bf3c2ed2c911c4e58104f49d4fdca82280947b17981fe3c23a5b4a3</originalsourceid><addsrcrecordid>eNpNkD1rwzAQhkVpoSHN3qGDobPdO31Y1mhC-gEmhfRjFYoiFYXUTiV76L-v02TIdC_c897BQ8gtQoEI6qFZ1QUFygsmEJlUF2RCmZQ5k2V5eZavySylLQCgoJIpMSH1wvtgg2v7pevzRZ35LmafIQ1mlzWdNX3o2mzlbPfVhv8c2mxp-iGO-zfrWpduyJU3u-RmpzklH4-L9_lz3rw-vczrJrcoRZ97kK5EKEGtPbPUbahViJY7USFwz9WG-401FaUVKC7XKFWF3o0oM2LNDZuS--Pdfex-Bpd6ve2G2I4vNUPOgFaihJGCI2Vjl1J0Xu9j-DbxVyPogys9utIHV_rkaqzcHSvBOXeGSylFxdkfsaZjTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143028560</pqid></control><display><type>article</type><title>EfficientNet-EA for Visual Location Recognition in Natural Scenes</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Heng ; Chen, Yanchao ; Liu, Yanli</creator><creatorcontrib>Zhang, Heng ; Chen, Yanchao ; Liu, Yanli</creatorcontrib><description>In natural scenarios, the visual location recognition often experiences reduced accuracy because of variations in weather, lighting, camera angles, and occlusions caused by dynamic objects. This paper introduces an EfficientNet-EA-based algorithm specifically designed to tackle these challenges. The algorithm enhances its capabilities by appending the Efficient Feature Aggregation (EA) layer to the end of EfficientNet and by using MultiSimilarityLoss for training purposes. This design enhances the model's ability to extract features, thereby boosting efficiency and accuracy. During the training phase, the model adeptly identifies and utilizes hard-negative and challenging positive samples, which in turn enhances its training efficacy and generalizability across diverse situations. The experimental results indicate that EfficientNet-EA achieves a recall@10 of 98.6% on Pitts30k-test. The model demonstrates a certain degree of improvement in recognition rates under weather variations, changes in illumination, shifts in perspective, and the presence of dynamic object occlusions.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3511379</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Computational modeling ; Convolutional neural networks ; EA layer ; EfficientNet-EA ; Feature extraction ; Illumination ; Image recognition ; Lighting ; Meteorology ; multisimilarityloss function ; Semantics ; Training ; Visual location recognition ; Visualization ; Weather</subject><ispartof>IEEE robotics and automation letters, 2025-01, Vol.10 (1), p.596-603</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-f07e610609bf3c2ed2c911c4e58104f49d4fdca82280947b17981fe3c23a5b4a3</cites><orcidid>0000-0001-9027-3261 ; 0000-0002-2691-034X ; 0009-0006-2873-1069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10777584$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10777584$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Chen, Yanchao</creatorcontrib><creatorcontrib>Liu, Yanli</creatorcontrib><title>EfficientNet-EA for Visual Location Recognition in Natural Scenes</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>In natural scenarios, the visual location recognition often experiences reduced accuracy because of variations in weather, lighting, camera angles, and occlusions caused by dynamic objects. This paper introduces an EfficientNet-EA-based algorithm specifically designed to tackle these challenges. The algorithm enhances its capabilities by appending the Efficient Feature Aggregation (EA) layer to the end of EfficientNet and by using MultiSimilarityLoss for training purposes. This design enhances the model's ability to extract features, thereby boosting efficiency and accuracy. During the training phase, the model adeptly identifies and utilizes hard-negative and challenging positive samples, which in turn enhances its training efficacy and generalizability across diverse situations. The experimental results indicate that EfficientNet-EA achieves a recall@10 of 98.6% on Pitts30k-test. The model demonstrates a certain degree of improvement in recognition rates under weather variations, changes in illumination, shifts in perspective, and the presence of dynamic object occlusions.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Convolutional neural networks</subject><subject>EA layer</subject><subject>EfficientNet-EA</subject><subject>Feature extraction</subject><subject>Illumination</subject><subject>Image recognition</subject><subject>Lighting</subject><subject>Meteorology</subject><subject>multisimilarityloss function</subject><subject>Semantics</subject><subject>Training</subject><subject>Visual location recognition</subject><subject>Visualization</subject><subject>Weather</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1rwzAQhkVpoSHN3qGDobPdO31Y1mhC-gEmhfRjFYoiFYXUTiV76L-v02TIdC_c897BQ8gtQoEI6qFZ1QUFygsmEJlUF2RCmZQ5k2V5eZavySylLQCgoJIpMSH1wvtgg2v7pevzRZ35LmafIQ1mlzWdNX3o2mzlbPfVhv8c2mxp-iGO-zfrWpduyJU3u-RmpzklH4-L9_lz3rw-vczrJrcoRZ97kK5EKEGtPbPUbahViJY7USFwz9WG-401FaUVKC7XKFWF3o0oM2LNDZuS--Pdfex-Bpd6ve2G2I4vNUPOgFaihJGCI2Vjl1J0Xu9j-DbxVyPogys9utIHV_rkaqzcHSvBOXeGSylFxdkfsaZjTg</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Zhang, Heng</creator><creator>Chen, Yanchao</creator><creator>Liu, Yanli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9027-3261</orcidid><orcidid>https://orcid.org/0000-0002-2691-034X</orcidid><orcidid>https://orcid.org/0009-0006-2873-1069</orcidid></search><sort><creationdate>202501</creationdate><title>EfficientNet-EA for Visual Location Recognition in Natural Scenes</title><author>Zhang, Heng ; Chen, Yanchao ; Liu, Yanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-f07e610609bf3c2ed2c911c4e58104f49d4fdca82280947b17981fe3c23a5b4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Convolutional neural networks</topic><topic>EA layer</topic><topic>EfficientNet-EA</topic><topic>Feature extraction</topic><topic>Illumination</topic><topic>Image recognition</topic><topic>Lighting</topic><topic>Meteorology</topic><topic>multisimilarityloss function</topic><topic>Semantics</topic><topic>Training</topic><topic>Visual location recognition</topic><topic>Visualization</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Chen, Yanchao</creatorcontrib><creatorcontrib>Liu, Yanli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Heng</au><au>Chen, Yanchao</au><au>Liu, Yanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EfficientNet-EA for Visual Location Recognition in Natural Scenes</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2025-01</date><risdate>2025</risdate><volume>10</volume><issue>1</issue><spage>596</spage><epage>603</epage><pages>596-603</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>In natural scenarios, the visual location recognition often experiences reduced accuracy because of variations in weather, lighting, camera angles, and occlusions caused by dynamic objects. This paper introduces an EfficientNet-EA-based algorithm specifically designed to tackle these challenges. The algorithm enhances its capabilities by appending the Efficient Feature Aggregation (EA) layer to the end of EfficientNet and by using MultiSimilarityLoss for training purposes. This design enhances the model's ability to extract features, thereby boosting efficiency and accuracy. During the training phase, the model adeptly identifies and utilizes hard-negative and challenging positive samples, which in turn enhances its training efficacy and generalizability across diverse situations. The experimental results indicate that EfficientNet-EA achieves a recall@10 of 98.6% on Pitts30k-test. The model demonstrates a certain degree of improvement in recognition rates under weather variations, changes in illumination, shifts in perspective, and the presence of dynamic object occlusions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3511379</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9027-3261</orcidid><orcidid>https://orcid.org/0000-0002-2691-034X</orcidid><orcidid>https://orcid.org/0009-0006-2873-1069</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2025-01, Vol.10 (1), p.596-603
issn 2377-3766
2377-3766
language eng
recordid cdi_crossref_primary_10_1109_LRA_2024_3511379
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Computational modeling
Convolutional neural networks
EA layer
EfficientNet-EA
Feature extraction
Illumination
Image recognition
Lighting
Meteorology
multisimilarityloss function
Semantics
Training
Visual location recognition
Visualization
Weather
title EfficientNet-EA for Visual Location Recognition in Natural Scenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EfficientNet-EA%20for%20Visual%20Location%20Recognition%20in%20Natural%20Scenes&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Zhang,%20Heng&rft.date=2025-01&rft.volume=10&rft.issue=1&rft.spage=596&rft.epage=603&rft.pages=596-603&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3511379&rft_dat=%3Cproquest_RIE%3E3143028560%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143028560&rft_id=info:pmid/&rft_ieee_id=10777584&rfr_iscdi=true