LiV-GS: LiDAR-Vision Integration for 3D Gaussian Splatting SLAM in Outdoor Environments
We present LiV-GS, a LiDAR-visual SLAM system in outdoor environments that leverages 3D Gaussian as a differentiable spatial representation. Notably, LiV-GS is the first method that directly aligns discrete and sparse LiDAR data with continuous differentiable Gaussian maps in large-scale outdoor sce...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2025-01, Vol.10 (1), p.421-428 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 428 |
---|---|
container_issue | 1 |
container_start_page | 421 |
container_title | IEEE robotics and automation letters |
container_volume | 10 |
creator | Xiao, Renxiang Liu, Wei Chen, Yushuai Hu, Liang |
description | We present LiV-GS, a LiDAR-visual SLAM system in outdoor environments that leverages 3D Gaussian as a differentiable spatial representation. Notably, LiV-GS is the first method that directly aligns discrete and sparse LiDAR data with continuous differentiable Gaussian maps in large-scale outdoor scenes, overcoming the limitation of fixed resolution in traditional LiDAR mapping. The system aligns point clouds with Gaussian maps using shared covariance attributes for front-end tracking and integrates the normal orientation into the loss function to refines the Gaussian map. To reliably and stably update Gaussians outside the LiDAR field of view, we introduce a novel conditional Gaussian constraint that aligns these Gaussians closely with the nearest reliable ones. The targeted adjustment enables LiV-GS to achieve fast and accurate mapping with novel view synthesis at a rate of 7.98 FPS. Extensive comparative experiments demonstrate LiV-GS's superior performance in SLAM, image rendering and mapping. The successful cross-modal radar-LiDAR localization highlights the potential of LiV-GS for applications in cross-modal semantic positioning and object segmentation with Gaussian maps. |
doi_str_mv | 10.1109/LRA.2024.3505777 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2024_3505777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10766656</ieee_id><sourcerecordid>3141611865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1327-1543d8a1e44081ea95ba9dfd6d95ba4731b21ce7ef884586172087a14c92326f3</originalsourceid><addsrcrecordid>eNpNkE1rwkAURYfSQsW676KLQNex8-Yz6S6otUKKoK1dDmMykRGd2Jmk0H_fBF24endx7n1wEHoEPAbA6Uu-ysYEEzamHHMp5Q0aECplTKUQt1f5Ho1C2GOMgRNJUz5A37ndxPP1a5TbabaKNzbY2kUL15id102fq9pHdBrNdRuC1S5anw66aazbRes8-4isi5ZtU9YdNXO_1tfuaFwTHtBdpQ_BjC53iL7eZp-T9zhfzheTLI8LoETGwBktEw2GMZyA0Snf6rSsSlH2iUkKWwKFkaZKEsYTAZLgRGpgRUooERUdoufz7snXP60JjdrXrXfdS0WBgQBIBO8ofKYKX4fgTaVO3h61_1OAVW9QdQZVb1BdDHaVp3PFGmOu8M6i4IL-A5pDabc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141611865</pqid></control><display><type>article</type><title>LiV-GS: LiDAR-Vision Integration for 3D Gaussian Splatting SLAM in Outdoor Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Renxiang ; Liu, Wei ; Chen, Yushuai ; Hu, Liang</creator><creatorcontrib>Xiao, Renxiang ; Liu, Wei ; Chen, Yushuai ; Hu, Liang</creatorcontrib><description>We present LiV-GS, a LiDAR-visual SLAM system in outdoor environments that leverages 3D Gaussian as a differentiable spatial representation. Notably, LiV-GS is the first method that directly aligns discrete and sparse LiDAR data with continuous differentiable Gaussian maps in large-scale outdoor scenes, overcoming the limitation of fixed resolution in traditional LiDAR mapping. The system aligns point clouds with Gaussian maps using shared covariance attributes for front-end tracking and integrates the normal orientation into the loss function to refines the Gaussian map. To reliably and stably update Gaussians outside the LiDAR field of view, we introduce a novel conditional Gaussian constraint that aligns these Gaussians closely with the nearest reliable ones. The targeted adjustment enables LiV-GS to achieve fast and accurate mapping with novel view synthesis at a rate of 7.98 FPS. Extensive comparative experiments demonstrate LiV-GS's superior performance in SLAM, image rendering and mapping. The successful cross-modal radar-LiDAR localization highlights the potential of LiV-GS for applications in cross-modal semantic positioning and object segmentation with Gaussian maps.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3505777</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D Gaussian splatting ; Cameras ; Field of view ; Image color analysis ; Image reconstruction ; Image segmentation ; Laser radar ; Lidar ; Mapping ; multi-sensor fusion ; Point cloud compression ; Radar imaging ; range sensing ; Rendering (computer graphics) ; Sensors ; Simultaneous localization and mapping ; SLAM ; Three dimensional models ; Three-dimensional displays ; Visualization</subject><ispartof>IEEE robotics and automation letters, 2025-01, Vol.10 (1), p.421-428</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9635-4297 ; 0009-0007-9479-9763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10766656$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10766656$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Renxiang</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Chen, Yushuai</creatorcontrib><creatorcontrib>Hu, Liang</creatorcontrib><title>LiV-GS: LiDAR-Vision Integration for 3D Gaussian Splatting SLAM in Outdoor Environments</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>We present LiV-GS, a LiDAR-visual SLAM system in outdoor environments that leverages 3D Gaussian as a differentiable spatial representation. Notably, LiV-GS is the first method that directly aligns discrete and sparse LiDAR data with continuous differentiable Gaussian maps in large-scale outdoor scenes, overcoming the limitation of fixed resolution in traditional LiDAR mapping. The system aligns point clouds with Gaussian maps using shared covariance attributes for front-end tracking and integrates the normal orientation into the loss function to refines the Gaussian map. To reliably and stably update Gaussians outside the LiDAR field of view, we introduce a novel conditional Gaussian constraint that aligns these Gaussians closely with the nearest reliable ones. The targeted adjustment enables LiV-GS to achieve fast and accurate mapping with novel view synthesis at a rate of 7.98 FPS. Extensive comparative experiments demonstrate LiV-GS's superior performance in SLAM, image rendering and mapping. The successful cross-modal radar-LiDAR localization highlights the potential of LiV-GS for applications in cross-modal semantic positioning and object segmentation with Gaussian maps.</description><subject>3D Gaussian splatting</subject><subject>Cameras</subject><subject>Field of view</subject><subject>Image color analysis</subject><subject>Image reconstruction</subject><subject>Image segmentation</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Mapping</subject><subject>multi-sensor fusion</subject><subject>Point cloud compression</subject><subject>Radar imaging</subject><subject>range sensing</subject><subject>Rendering (computer graphics)</subject><subject>Sensors</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Visualization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1rwkAURYfSQsW676KLQNex8-Yz6S6otUKKoK1dDmMykRGd2Jmk0H_fBF24endx7n1wEHoEPAbA6Uu-ysYEEzamHHMp5Q0aECplTKUQt1f5Ho1C2GOMgRNJUz5A37ndxPP1a5TbabaKNzbY2kUL15id102fq9pHdBrNdRuC1S5anw66aazbRes8-4isi5ZtU9YdNXO_1tfuaFwTHtBdpQ_BjC53iL7eZp-T9zhfzheTLI8LoETGwBktEw2GMZyA0Snf6rSsSlH2iUkKWwKFkaZKEsYTAZLgRGpgRUooERUdoufz7snXP60JjdrXrXfdS0WBgQBIBO8ofKYKX4fgTaVO3h61_1OAVW9QdQZVb1BdDHaVp3PFGmOu8M6i4IL-A5pDabc</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Xiao, Renxiang</creator><creator>Liu, Wei</creator><creator>Chen, Yushuai</creator><creator>Hu, Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9635-4297</orcidid><orcidid>https://orcid.org/0009-0007-9479-9763</orcidid></search><sort><creationdate>20250101</creationdate><title>LiV-GS: LiDAR-Vision Integration for 3D Gaussian Splatting SLAM in Outdoor Environments</title><author>Xiao, Renxiang ; Liu, Wei ; Chen, Yushuai ; Hu, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1327-1543d8a1e44081ea95ba9dfd6d95ba4731b21ce7ef884586172087a14c92326f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>3D Gaussian splatting</topic><topic>Cameras</topic><topic>Field of view</topic><topic>Image color analysis</topic><topic>Image reconstruction</topic><topic>Image segmentation</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Mapping</topic><topic>multi-sensor fusion</topic><topic>Point cloud compression</topic><topic>Radar imaging</topic><topic>range sensing</topic><topic>Rendering (computer graphics)</topic><topic>Sensors</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Renxiang</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Chen, Yushuai</creatorcontrib><creatorcontrib>Hu, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Renxiang</au><au>Liu, Wei</au><au>Chen, Yushuai</au><au>Hu, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LiV-GS: LiDAR-Vision Integration for 3D Gaussian Splatting SLAM in Outdoor Environments</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>10</volume><issue>1</issue><spage>421</spage><epage>428</epage><pages>421-428</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>We present LiV-GS, a LiDAR-visual SLAM system in outdoor environments that leverages 3D Gaussian as a differentiable spatial representation. Notably, LiV-GS is the first method that directly aligns discrete and sparse LiDAR data with continuous differentiable Gaussian maps in large-scale outdoor scenes, overcoming the limitation of fixed resolution in traditional LiDAR mapping. The system aligns point clouds with Gaussian maps using shared covariance attributes for front-end tracking and integrates the normal orientation into the loss function to refines the Gaussian map. To reliably and stably update Gaussians outside the LiDAR field of view, we introduce a novel conditional Gaussian constraint that aligns these Gaussians closely with the nearest reliable ones. The targeted adjustment enables LiV-GS to achieve fast and accurate mapping with novel view synthesis at a rate of 7.98 FPS. Extensive comparative experiments demonstrate LiV-GS's superior performance in SLAM, image rendering and mapping. The successful cross-modal radar-LiDAR localization highlights the potential of LiV-GS for applications in cross-modal semantic positioning and object segmentation with Gaussian maps.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3505777</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9635-4297</orcidid><orcidid>https://orcid.org/0009-0007-9479-9763</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2025-01, Vol.10 (1), p.421-428 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LRA_2024_3505777 |
source | IEEE Electronic Library (IEL) |
subjects | 3D Gaussian splatting Cameras Field of view Image color analysis Image reconstruction Image segmentation Laser radar Lidar Mapping multi-sensor fusion Point cloud compression Radar imaging range sensing Rendering (computer graphics) Sensors Simultaneous localization and mapping SLAM Three dimensional models Three-dimensional displays Visualization |
title | LiV-GS: LiDAR-Vision Integration for 3D Gaussian Splatting SLAM in Outdoor Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LiV-GS:%20LiDAR-Vision%20Integration%20for%203D%20Gaussian%20Splatting%20SLAM%20in%20Outdoor%20Environments&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Xiao,%20Renxiang&rft.date=2025-01-01&rft.volume=10&rft.issue=1&rft.spage=421&rft.epage=428&rft.pages=421-428&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3505777&rft_dat=%3Cproquest_RIE%3E3141611865%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141611865&rft_id=info:pmid/&rft_ieee_id=10766656&rfr_iscdi=true |