Learning Semantic Traversability With Egocentric Video and Automated Annotation Strategy
For reliable autonomous robot navigation in urban settings, the robot must have the ability to identify semantically traversable terrains in the image based on the semantic understanding of the scene. This reasoning ability is based on semantic traversability, which is frequently achieved using sema...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2024-11, Vol.9 (11), p.10423-10430 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10430 |
---|---|
container_issue | 11 |
container_start_page | 10423 |
container_title | IEEE robotics and automation letters |
container_volume | 9 |
creator | Kim, Yunho Lee, Jeong Hyun Lee, Choongin Mun, Juhyeok Youm, Donghoon Park, Jeongsoo Hwangbo, Jemin |
description | For reliable autonomous robot navigation in urban settings, the robot must have the ability to identify semantically traversable terrains in the image based on the semantic understanding of the scene. This reasoning ability is based on semantic traversability, which is frequently achieved using semantic segmentation models fine-tuned on the testing domain. This fine-tuning process often involves manual data collection with the target robot and annotation by human labelers which is prohibitively expensive and unscalable. In this work, we present an effective methodology for training a semantic traversability estimator using egocentric videos and an automated annotation process. Egocentric videos are collected from a camera mounted on a pedestrian's chest. The dataset for training the semantic traversability estimator is then automatically generated by extracting semantically traversable regions in each video frame using a recent foundation model in image segmentation and its prompting technique. Extensive experiments with videos taken across several countries and cities, covering diverse urban scenarios, demonstrate the high scalability and generalizability of the proposed annotation method. Furthermore, performance analysis and real-world deployment for autonomous robot navigation showcase that the trained semantic traversability estimator is highly accurate, able to handle diverse camera viewpoints, computationally light, and real-world applicable. |
doi_str_mv | 10.1109/LRA.2024.3474548 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2024_3474548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10705064</ieee_id><sourcerecordid>10_1109_LRA_2024_3474548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c189t-94941a86170f38dc6edd4f9f1225b940644d178fd04a86871e498742fa4abae63</originalsourceid><addsrcrecordid>eNpNkEtrwzAQhEVpoSHNvYce_Aec6rG2pGMI6QMMhSZ93IxirVKVRC6yWsi_r0JyyGmH3Zkd-Ai5ZXTKGNX3zetsyimHqQAJFagLMuJCylLIur4809dkMgzflFJWcSl0NSKfDZoYfNgUS9yZkHxXrKL5wziYtd_6tC8-fPoqFpu-w5BiPr97i31hgi1mv6nfmYRZhdAnk3wfimWKebXZ35ArZ7YDTk5zTN4eFqv5U9m8PD7PZ03ZMaVTqUEDM6pmkjqhbFejteC0Y5xXaw20BrBMKmcpZJeSDEErCdwZMGuDtRgTevzbxX4YIrr2J_qdifuW0fYAp81w2gOc9gQnR-6OEY-IZ3ZJq9wn_gFA8GDo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning Semantic Traversability With Egocentric Video and Automated Annotation Strategy</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Yunho ; Lee, Jeong Hyun ; Lee, Choongin ; Mun, Juhyeok ; Youm, Donghoon ; Park, Jeongsoo ; Hwangbo, Jemin</creator><creatorcontrib>Kim, Yunho ; Lee, Jeong Hyun ; Lee, Choongin ; Mun, Juhyeok ; Youm, Donghoon ; Park, Jeongsoo ; Hwangbo, Jemin</creatorcontrib><description>For reliable autonomous robot navigation in urban settings, the robot must have the ability to identify semantically traversable terrains in the image based on the semantic understanding of the scene. This reasoning ability is based on semantic traversability, which is frequently achieved using semantic segmentation models fine-tuned on the testing domain. This fine-tuning process often involves manual data collection with the target robot and annotation by human labelers which is prohibitively expensive and unscalable. In this work, we present an effective methodology for training a semantic traversability estimator using egocentric videos and an automated annotation process. Egocentric videos are collected from a camera mounted on a pedestrian's chest. The dataset for training the semantic traversability estimator is then automatically generated by extracting semantically traversable regions in each video frame using a recent foundation model in image segmentation and its prompting technique. Extensive experiments with videos taken across several countries and cities, covering diverse urban scenarios, demonstrate the high scalability and generalizability of the proposed annotation method. Furthermore, performance analysis and real-world deployment for autonomous robot navigation showcase that the trained semantic traversability estimator is highly accurate, able to handle diverse camera viewpoints, computationally light, and real-world applicable.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3474548</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Annotations ; Cameras ; Data collection ; Deep learning for visual perception ; Navigation ; Robot vision systems ; semantic scene understanding ; Semantic segmentation ; Semantics ; Training ; vision-based navigation ; Visualization</subject><ispartof>IEEE robotics and automation letters, 2024-11, Vol.9 (11), p.10423-10430</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c189t-94941a86170f38dc6edd4f9f1225b940644d178fd04a86871e498742fa4abae63</cites><orcidid>0009-0003-8735-9373 ; 0000-0002-6558-3660 ; 0000-0002-3444-8079 ; 0009-0001-4985-8118 ; 0000-0001-6598-2875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10705064$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10705064$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Yunho</creatorcontrib><creatorcontrib>Lee, Jeong Hyun</creatorcontrib><creatorcontrib>Lee, Choongin</creatorcontrib><creatorcontrib>Mun, Juhyeok</creatorcontrib><creatorcontrib>Youm, Donghoon</creatorcontrib><creatorcontrib>Park, Jeongsoo</creatorcontrib><creatorcontrib>Hwangbo, Jemin</creatorcontrib><title>Learning Semantic Traversability With Egocentric Video and Automated Annotation Strategy</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>For reliable autonomous robot navigation in urban settings, the robot must have the ability to identify semantically traversable terrains in the image based on the semantic understanding of the scene. This reasoning ability is based on semantic traversability, which is frequently achieved using semantic segmentation models fine-tuned on the testing domain. This fine-tuning process often involves manual data collection with the target robot and annotation by human labelers which is prohibitively expensive and unscalable. In this work, we present an effective methodology for training a semantic traversability estimator using egocentric videos and an automated annotation process. Egocentric videos are collected from a camera mounted on a pedestrian's chest. The dataset for training the semantic traversability estimator is then automatically generated by extracting semantically traversable regions in each video frame using a recent foundation model in image segmentation and its prompting technique. Extensive experiments with videos taken across several countries and cities, covering diverse urban scenarios, demonstrate the high scalability and generalizability of the proposed annotation method. Furthermore, performance analysis and real-world deployment for autonomous robot navigation showcase that the trained semantic traversability estimator is highly accurate, able to handle diverse camera viewpoints, computationally light, and real-world applicable.</description><subject>Annotations</subject><subject>Cameras</subject><subject>Data collection</subject><subject>Deep learning for visual perception</subject><subject>Navigation</subject><subject>Robot vision systems</subject><subject>semantic scene understanding</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Training</subject><subject>vision-based navigation</subject><subject>Visualization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtrwzAQhEVpoSHNvYce_Aec6rG2pGMI6QMMhSZ93IxirVKVRC6yWsi_r0JyyGmH3Zkd-Ai5ZXTKGNX3zetsyimHqQAJFagLMuJCylLIur4809dkMgzflFJWcSl0NSKfDZoYfNgUS9yZkHxXrKL5wziYtd_6tC8-fPoqFpu-w5BiPr97i31hgi1mv6nfmYRZhdAnk3wfimWKebXZ35ArZ7YDTk5zTN4eFqv5U9m8PD7PZ03ZMaVTqUEDM6pmkjqhbFejteC0Y5xXaw20BrBMKmcpZJeSDEErCdwZMGuDtRgTevzbxX4YIrr2J_qdifuW0fYAp81w2gOc9gQnR-6OEY-IZ3ZJq9wn_gFA8GDo</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Kim, Yunho</creator><creator>Lee, Jeong Hyun</creator><creator>Lee, Choongin</creator><creator>Mun, Juhyeok</creator><creator>Youm, Donghoon</creator><creator>Park, Jeongsoo</creator><creator>Hwangbo, Jemin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0003-8735-9373</orcidid><orcidid>https://orcid.org/0000-0002-6558-3660</orcidid><orcidid>https://orcid.org/0000-0002-3444-8079</orcidid><orcidid>https://orcid.org/0009-0001-4985-8118</orcidid><orcidid>https://orcid.org/0000-0001-6598-2875</orcidid></search><sort><creationdate>202411</creationdate><title>Learning Semantic Traversability With Egocentric Video and Automated Annotation Strategy</title><author>Kim, Yunho ; Lee, Jeong Hyun ; Lee, Choongin ; Mun, Juhyeok ; Youm, Donghoon ; Park, Jeongsoo ; Hwangbo, Jemin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c189t-94941a86170f38dc6edd4f9f1225b940644d178fd04a86871e498742fa4abae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Cameras</topic><topic>Data collection</topic><topic>Deep learning for visual perception</topic><topic>Navigation</topic><topic>Robot vision systems</topic><topic>semantic scene understanding</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Training</topic><topic>vision-based navigation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yunho</creatorcontrib><creatorcontrib>Lee, Jeong Hyun</creatorcontrib><creatorcontrib>Lee, Choongin</creatorcontrib><creatorcontrib>Mun, Juhyeok</creatorcontrib><creatorcontrib>Youm, Donghoon</creatorcontrib><creatorcontrib>Park, Jeongsoo</creatorcontrib><creatorcontrib>Hwangbo, Jemin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Yunho</au><au>Lee, Jeong Hyun</au><au>Lee, Choongin</au><au>Mun, Juhyeok</au><au>Youm, Donghoon</au><au>Park, Jeongsoo</au><au>Hwangbo, Jemin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Semantic Traversability With Egocentric Video and Automated Annotation Strategy</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-11</date><risdate>2024</risdate><volume>9</volume><issue>11</issue><spage>10423</spage><epage>10430</epage><pages>10423-10430</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>For reliable autonomous robot navigation in urban settings, the robot must have the ability to identify semantically traversable terrains in the image based on the semantic understanding of the scene. This reasoning ability is based on semantic traversability, which is frequently achieved using semantic segmentation models fine-tuned on the testing domain. This fine-tuning process often involves manual data collection with the target robot and annotation by human labelers which is prohibitively expensive and unscalable. In this work, we present an effective methodology for training a semantic traversability estimator using egocentric videos and an automated annotation process. Egocentric videos are collected from a camera mounted on a pedestrian's chest. The dataset for training the semantic traversability estimator is then automatically generated by extracting semantically traversable regions in each video frame using a recent foundation model in image segmentation and its prompting technique. Extensive experiments with videos taken across several countries and cities, covering diverse urban scenarios, demonstrate the high scalability and generalizability of the proposed annotation method. Furthermore, performance analysis and real-world deployment for autonomous robot navigation showcase that the trained semantic traversability estimator is highly accurate, able to handle diverse camera viewpoints, computationally light, and real-world applicable.</abstract><pub>IEEE</pub><doi>10.1109/LRA.2024.3474548</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0003-8735-9373</orcidid><orcidid>https://orcid.org/0000-0002-6558-3660</orcidid><orcidid>https://orcid.org/0000-0002-3444-8079</orcidid><orcidid>https://orcid.org/0009-0001-4985-8118</orcidid><orcidid>https://orcid.org/0000-0001-6598-2875</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2024-11, Vol.9 (11), p.10423-10430 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LRA_2024_3474548 |
source | IEEE Electronic Library (IEL) |
subjects | Annotations Cameras Data collection Deep learning for visual perception Navigation Robot vision systems semantic scene understanding Semantic segmentation Semantics Training vision-based navigation Visualization |
title | Learning Semantic Traversability With Egocentric Video and Automated Annotation Strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Semantic%20Traversability%20With%20Egocentric%20Video%20and%20Automated%20Annotation%20Strategy&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Kim,%20Yunho&rft.date=2024-11&rft.volume=9&rft.issue=11&rft.spage=10423&rft.epage=10430&rft.pages=10423-10430&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3474548&rft_dat=%3Ccrossref_RIE%3E10_1109_LRA_2024_3474548%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10705064&rfr_iscdi=true |