3D Active Metric-Semantic SLAM

In this letter, we address the problem of exploration and metric-semantic mapping of multi-floor GPS-denied indoor environments using swap constrained aerial robots. Most previous work in exploration assumes that robot localization is solved. However, neglecting the state uncertainty of the agent ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2024-03, Vol.9 (3), p.1-8
Hauptverfasser: Tao, Yuezhan, Liu, Xu, Spasojevic, Igor, Agarwal, Saurav, Kumar, Vijay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 3
container_start_page 1
container_title IEEE robotics and automation letters
container_volume 9
creator Tao, Yuezhan
Liu, Xu
Spasojevic, Igor
Agarwal, Saurav
Kumar, Vijay
description In this letter, we address the problem of exploration and metric-semantic mapping of multi-floor GPS-denied indoor environments using swap constrained aerial robots. Most previous work in exploration assumes that robot localization is solved. However, neglecting the state uncertainty of the agent can ultimately lead to cascading errors both in the resulting map and in the state of the agent itself. Furthermore, actions that reduce localization errors may be at direct odds with the exploration task. We develop a framework that balances the efficiency of exploration with actions that reduce the state uncertainty of the agent. In particular, our algorithmic approach for active metric-semantic SLAM is built upon sparse information abstracted from raw problem data, to make it suitable for swap-constrained robots. Furthermore, we integrate this framework within a fully autonomous aerial robotic system that achieves autonomous exploration in cluttered, 3D environments. From extensive real-world experiments, we showed that by including slc, we can reduce the robot pose estimation errors by over 90% in translation and approximately 75% in yaw, and the uncertainties in pose estimates and semantic maps by over 70% and 65%, respectively. Although discussed in the context of indoor multi-floor exploration, our system can be used for various other applications, such as infrastructure inspection and precision agriculture where reliable GPS data may not be available.
doi_str_mv 10.1109/LRA.2024.3363542
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2024_3363542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10423804</ieee_id><sourcerecordid>2929258944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-2a5ddc5939c19d461bc56c7a9a89d6040cfe03175e2f6a9a99a8f9347cab77ae3</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGrvHkQWPO86yeRjc1yqVWGLYPUc0mwWtthuTbaC_70p20NPM8x7bx78CLmlUFAK-rH-qAoGjBeIEgVnF2TCUKkclZSXZ_s1mcW4AQAqmEItJuQen7LKDd2vz5Z-CJ3LV35rd0PnslVdLW_IVWu_o5-d5pR8LZ4_5695_f7yNq_q3DHNhpxZ0TROaNSO6oZLunZCOmW1LXUjgYNrPSBVwrNWpqtOQquRK2fXSlmPU_Iw_t2H_ufg42A2_SHsUqVJBZqJUnOeXDC6XOhjDL41-9BtbfgzFMwRhEkgzBGEOYFIkbsx0nnvz-xJKoHjP97NVjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929258944</pqid></control><display><type>article</type><title>3D Active Metric-Semantic SLAM</title><source>IEEE Electronic Library (IEL)</source><creator>Tao, Yuezhan ; Liu, Xu ; Spasojevic, Igor ; Agarwal, Saurav ; Kumar, Vijay</creator><creatorcontrib>Tao, Yuezhan ; Liu, Xu ; Spasojevic, Igor ; Agarwal, Saurav ; Kumar, Vijay</creatorcontrib><description>In this letter, we address the problem of exploration and metric-semantic mapping of multi-floor GPS-denied indoor environments using swap constrained aerial robots. Most previous work in exploration assumes that robot localization is solved. However, neglecting the state uncertainty of the agent can ultimately lead to cascading errors both in the resulting map and in the state of the agent itself. Furthermore, actions that reduce localization errors may be at direct odds with the exploration task. We develop a framework that balances the efficiency of exploration with actions that reduce the state uncertainty of the agent. In particular, our algorithmic approach for active metric-semantic SLAM is built upon sparse information abstracted from raw problem data, to make it suitable for swap-constrained robots. Furthermore, we integrate this framework within a fully autonomous aerial robotic system that achieves autonomous exploration in cluttered, 3D environments. From extensive real-world experiments, we showed that by including slc, we can reduce the robot pose estimation errors by over 90% in translation and approximately 75% in yaw, and the uncertainties in pose estimates and semantic maps by over 70% and 65%, respectively. Although discussed in the context of indoor multi-floor exploration, our system can be used for various other applications, such as infrastructure inspection and precision agriculture where reliable GPS data may not be available.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3363542</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerial Systems: Perception and Autonomy ; Autonomous aerial vehicles ; Errors ; Global positioning systems ; GPS ; Indoor environments ; Localization ; Mapping ; Perception-Action Coupling ; Planning ; Pose estimation ; Real-time systems ; Robots ; Semantics ; Simultaneous localization and mapping ; Spatial data ; Three-dimensional displays ; Uncertainty ; Yaw</subject><ispartof>IEEE robotics and automation letters, 2024-03, Vol.9 (3), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-2a5ddc5939c19d461bc56c7a9a89d6040cfe03175e2f6a9a99a8f9347cab77ae3</citedby><cites>FETCH-LOGICAL-c292t-2a5ddc5939c19d461bc56c7a9a89d6040cfe03175e2f6a9a99a8f9347cab77ae3</cites><orcidid>0000-0003-3155-0171 ; 0000-0002-3902-9391 ; 0000-0002-7448-8411 ; 0000-0002-1035-9557 ; 0000-0003-1148-3186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10423804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10423804$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tao, Yuezhan</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Spasojevic, Igor</creatorcontrib><creatorcontrib>Agarwal, Saurav</creatorcontrib><creatorcontrib>Kumar, Vijay</creatorcontrib><title>3D Active Metric-Semantic SLAM</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>In this letter, we address the problem of exploration and metric-semantic mapping of multi-floor GPS-denied indoor environments using swap constrained aerial robots. Most previous work in exploration assumes that robot localization is solved. However, neglecting the state uncertainty of the agent can ultimately lead to cascading errors both in the resulting map and in the state of the agent itself. Furthermore, actions that reduce localization errors may be at direct odds with the exploration task. We develop a framework that balances the efficiency of exploration with actions that reduce the state uncertainty of the agent. In particular, our algorithmic approach for active metric-semantic SLAM is built upon sparse information abstracted from raw problem data, to make it suitable for swap-constrained robots. Furthermore, we integrate this framework within a fully autonomous aerial robotic system that achieves autonomous exploration in cluttered, 3D environments. From extensive real-world experiments, we showed that by including slc, we can reduce the robot pose estimation errors by over 90% in translation and approximately 75% in yaw, and the uncertainties in pose estimates and semantic maps by over 70% and 65%, respectively. Although discussed in the context of indoor multi-floor exploration, our system can be used for various other applications, such as infrastructure inspection and precision agriculture where reliable GPS data may not be available.</description><subject>Aerial Systems: Perception and Autonomy</subject><subject>Autonomous aerial vehicles</subject><subject>Errors</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Indoor environments</subject><subject>Localization</subject><subject>Mapping</subject><subject>Perception-Action Coupling</subject><subject>Planning</subject><subject>Pose estimation</subject><subject>Real-time systems</subject><subject>Robots</subject><subject>Semantics</subject><subject>Simultaneous localization and mapping</subject><subject>Spatial data</subject><subject>Three-dimensional displays</subject><subject>Uncertainty</subject><subject>Yaw</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWGrvHkQWPO86yeRjc1yqVWGLYPUc0mwWtthuTbaC_70p20NPM8x7bx78CLmlUFAK-rH-qAoGjBeIEgVnF2TCUKkclZSXZ_s1mcW4AQAqmEItJuQen7LKDd2vz5Z-CJ3LV35rd0PnslVdLW_IVWu_o5-d5pR8LZ4_5695_f7yNq_q3DHNhpxZ0TROaNSO6oZLunZCOmW1LXUjgYNrPSBVwrNWpqtOQquRK2fXSlmPU_Iw_t2H_ufg42A2_SHsUqVJBZqJUnOeXDC6XOhjDL41-9BtbfgzFMwRhEkgzBGEOYFIkbsx0nnvz-xJKoHjP97NVjA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Tao, Yuezhan</creator><creator>Liu, Xu</creator><creator>Spasojevic, Igor</creator><creator>Agarwal, Saurav</creator><creator>Kumar, Vijay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3155-0171</orcidid><orcidid>https://orcid.org/0000-0002-3902-9391</orcidid><orcidid>https://orcid.org/0000-0002-7448-8411</orcidid><orcidid>https://orcid.org/0000-0002-1035-9557</orcidid><orcidid>https://orcid.org/0000-0003-1148-3186</orcidid></search><sort><creationdate>20240301</creationdate><title>3D Active Metric-Semantic SLAM</title><author>Tao, Yuezhan ; Liu, Xu ; Spasojevic, Igor ; Agarwal, Saurav ; Kumar, Vijay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-2a5ddc5939c19d461bc56c7a9a89d6040cfe03175e2f6a9a99a8f9347cab77ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerial Systems: Perception and Autonomy</topic><topic>Autonomous aerial vehicles</topic><topic>Errors</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Indoor environments</topic><topic>Localization</topic><topic>Mapping</topic><topic>Perception-Action Coupling</topic><topic>Planning</topic><topic>Pose estimation</topic><topic>Real-time systems</topic><topic>Robots</topic><topic>Semantics</topic><topic>Simultaneous localization and mapping</topic><topic>Spatial data</topic><topic>Three-dimensional displays</topic><topic>Uncertainty</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Yuezhan</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Spasojevic, Igor</creatorcontrib><creatorcontrib>Agarwal, Saurav</creatorcontrib><creatorcontrib>Kumar, Vijay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tao, Yuezhan</au><au>Liu, Xu</au><au>Spasojevic, Igor</au><au>Agarwal, Saurav</au><au>Kumar, Vijay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Active Metric-Semantic SLAM</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>9</volume><issue>3</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>In this letter, we address the problem of exploration and metric-semantic mapping of multi-floor GPS-denied indoor environments using swap constrained aerial robots. Most previous work in exploration assumes that robot localization is solved. However, neglecting the state uncertainty of the agent can ultimately lead to cascading errors both in the resulting map and in the state of the agent itself. Furthermore, actions that reduce localization errors may be at direct odds with the exploration task. We develop a framework that balances the efficiency of exploration with actions that reduce the state uncertainty of the agent. In particular, our algorithmic approach for active metric-semantic SLAM is built upon sparse information abstracted from raw problem data, to make it suitable for swap-constrained robots. Furthermore, we integrate this framework within a fully autonomous aerial robotic system that achieves autonomous exploration in cluttered, 3D environments. From extensive real-world experiments, we showed that by including slc, we can reduce the robot pose estimation errors by over 90% in translation and approximately 75% in yaw, and the uncertainties in pose estimates and semantic maps by over 70% and 65%, respectively. Although discussed in the context of indoor multi-floor exploration, our system can be used for various other applications, such as infrastructure inspection and precision agriculture where reliable GPS data may not be available.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3363542</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3155-0171</orcidid><orcidid>https://orcid.org/0000-0002-3902-9391</orcidid><orcidid>https://orcid.org/0000-0002-7448-8411</orcidid><orcidid>https://orcid.org/0000-0002-1035-9557</orcidid><orcidid>https://orcid.org/0000-0003-1148-3186</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2024-03, Vol.9 (3), p.1-8
issn 2377-3766
2377-3766
language eng
recordid cdi_crossref_primary_10_1109_LRA_2024_3363542
source IEEE Electronic Library (IEL)
subjects Aerial Systems: Perception and Autonomy
Autonomous aerial vehicles
Errors
Global positioning systems
GPS
Indoor environments
Localization
Mapping
Perception-Action Coupling
Planning
Pose estimation
Real-time systems
Robots
Semantics
Simultaneous localization and mapping
Spatial data
Three-dimensional displays
Uncertainty
Yaw
title 3D Active Metric-Semantic SLAM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Active%20Metric-Semantic%20SLAM&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Tao,%20Yuezhan&rft.date=2024-03-01&rft.volume=9&rft.issue=3&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3363542&rft_dat=%3Cproquest_RIE%3E2929258944%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929258944&rft_id=info:pmid/&rft_ieee_id=10423804&rfr_iscdi=true