Bridging Human-Robot Co-Adaptation via Biofeedback for Continuous Myoelectric Control
This letter proposes a novel human-robot co-adaptation framework for robust and accurate user intent recognition, specifically in the context of automatic control in assistance robots such as neural prosthetics and rehabilitation devices empowered by electrophysiological signals. Our goal is to inco...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2023-12, Vol.8 (12), p.8573-8580 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8580 |
---|---|
container_issue | 12 |
container_start_page | 8573 |
container_title | IEEE robotics and automation letters |
container_volume | 8 |
creator | Hu, Xuhui Song, Aiguo Zeng, Hong Wei, Zhikai Deng, Hanjie Chen, Dapeng |
description | This letter proposes a novel human-robot co-adaptation framework for robust and accurate user intent recognition, specifically in the context of automatic control in assistance robots such as neural prosthetics and rehabilitation devices empowered by electrophysiological signals. Our goal is to incorporate user adaptability early in the training phase to facilitate both machine recognition and user adaptability, rather than relying solely on brute-force machine learning methods. The proposed framework is featured by applying biofeedback-based user adaptive behavior into model training, while the machine can adapt to those changes through online learning. Specifically, this study focuses on the recognition of two-degree-of-freedom simultaneous and continuous wrist movement intentions based on surface electromyogram (sEMG) array signals, and the performance is tested on twelve able-bodied subjects. The co-adaptive evaluation experiment demonstrates the robust control of this method by introducing sEMG electrode displacement as perturbations. Experimental results show that this method improves the completion time of centre-out tasks by 13% compared to conventional methods (Cohen's d = 0.637), and debias 86% of the effect of electrode shift perturbations. This study provides insights into the potential for incorporating human adaptability into machine intelligence to improve user intent recognition and automatic robot control. |
doi_str_mv | 10.1109/LRA.2023.3330053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2023_3330053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10306285</ieee_id><sourcerecordid>2890111319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-6f6ffc66a423856dffcbd3dcee6f94877821b87108ec440a4e0482dd6a3b1ecd3</originalsourceid><addsrcrecordid>eNpNkE1rwkAQhpfSQsV676GHQM-xszvJZnNUabVgKUg9L5v9kLWatZuk4L9vrB48zQfPOwMPIY8UxpRC-bJcTcYMGI4RESDHGzJgWBQpFpzfXvX3ZNQ0WwCgOSuwzAdkPY3ebHy9SRbdXtXpKlShTWYhnRh1aFXrQ538epVMfXDWmkrp78SF2BN16-sudE3ycQx2Z3Ubvf5fx7B7IHdO7Ro7utQhWb-9fs0W6fJz_j6bLFONmLUpd9w5zbnKGIqcm36oDBptLXdlJopCMFqJgoKwOstAZRYywYzhCitqtcEheT7fPcTw09mmldvQxbp_KZkogVKKtOwpOFM6hqaJ1slD9HsVj5KCPPmTvT958icv_vrI0znirbVXOAJnIsc_TO9sCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890111319</pqid></control><display><type>article</type><title>Bridging Human-Robot Co-Adaptation via Biofeedback for Continuous Myoelectric Control</title><source>IEEE Xplore</source><creator>Hu, Xuhui ; Song, Aiguo ; Zeng, Hong ; Wei, Zhikai ; Deng, Hanjie ; Chen, Dapeng</creator><creatorcontrib>Hu, Xuhui ; Song, Aiguo ; Zeng, Hong ; Wei, Zhikai ; Deng, Hanjie ; Chen, Dapeng</creatorcontrib><description>This letter proposes a novel human-robot co-adaptation framework for robust and accurate user intent recognition, specifically in the context of automatic control in assistance robots such as neural prosthetics and rehabilitation devices empowered by electrophysiological signals. Our goal is to incorporate user adaptability early in the training phase to facilitate both machine recognition and user adaptability, rather than relying solely on brute-force machine learning methods. The proposed framework is featured by applying biofeedback-based user adaptive behavior into model training, while the machine can adapt to those changes through online learning. Specifically, this study focuses on the recognition of two-degree-of-freedom simultaneous and continuous wrist movement intentions based on surface electromyogram (sEMG) array signals, and the performance is tested on twelve able-bodied subjects. The co-adaptive evaluation experiment demonstrates the robust control of this method by introducing sEMG electrode displacement as perturbations. Experimental results show that this method improves the completion time of centre-out tasks by 13% compared to conventional methods (Cohen's d = 0.637), and debias 86% of the effect of electrode shift perturbations. This study provides insights into the potential for incorporating human adaptability into machine intelligence to improve user intent recognition and automatic robot control.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3330053</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptability ; Adaptation ; Adaptation models ; Adaptive control ; Automatic control ; Biofeedback ; Biological system modeling ; Completion time ; Electrodes ; EMG ; Human-robot co-adaptation ; Machine intelligence ; Machine learning ; Myoelectric control ; Myoelectricity ; Neural prostheses ; Perturbation ; Protocols ; Recognition ; Robot control ; Robots ; Robust control ; Task analysis ; Training ; user intent recognition ; Wrist</subject><ispartof>IEEE robotics and automation letters, 2023-12, Vol.8 (12), p.8573-8580</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-6f6ffc66a423856dffcbd3dcee6f94877821b87108ec440a4e0482dd6a3b1ecd3</citedby><cites>FETCH-LOGICAL-c334t-6f6ffc66a423856dffcbd3dcee6f94877821b87108ec440a4e0482dd6a3b1ecd3</cites><orcidid>0009-0001-6820-9164 ; 0000-0002-1930-419X ; 0000-0002-4587-6263 ; 0009-0000-0747-184X ; 0000-0001-7632-3090 ; 0000-0002-1982-6780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10306285$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids></links><search><creatorcontrib>Hu, Xuhui</creatorcontrib><creatorcontrib>Song, Aiguo</creatorcontrib><creatorcontrib>Zeng, Hong</creatorcontrib><creatorcontrib>Wei, Zhikai</creatorcontrib><creatorcontrib>Deng, Hanjie</creatorcontrib><creatorcontrib>Chen, Dapeng</creatorcontrib><title>Bridging Human-Robot Co-Adaptation via Biofeedback for Continuous Myoelectric Control</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This letter proposes a novel human-robot co-adaptation framework for robust and accurate user intent recognition, specifically in the context of automatic control in assistance robots such as neural prosthetics and rehabilitation devices empowered by electrophysiological signals. Our goal is to incorporate user adaptability early in the training phase to facilitate both machine recognition and user adaptability, rather than relying solely on brute-force machine learning methods. The proposed framework is featured by applying biofeedback-based user adaptive behavior into model training, while the machine can adapt to those changes through online learning. Specifically, this study focuses on the recognition of two-degree-of-freedom simultaneous and continuous wrist movement intentions based on surface electromyogram (sEMG) array signals, and the performance is tested on twelve able-bodied subjects. The co-adaptive evaluation experiment demonstrates the robust control of this method by introducing sEMG electrode displacement as perturbations. Experimental results show that this method improves the completion time of centre-out tasks by 13% compared to conventional methods (Cohen's d = 0.637), and debias 86% of the effect of electrode shift perturbations. This study provides insights into the potential for incorporating human adaptability into machine intelligence to improve user intent recognition and automatic robot control.</description><subject>Adaptability</subject><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Automatic control</subject><subject>Biofeedback</subject><subject>Biological system modeling</subject><subject>Completion time</subject><subject>Electrodes</subject><subject>EMG</subject><subject>Human-robot co-adaptation</subject><subject>Machine intelligence</subject><subject>Machine learning</subject><subject>Myoelectric control</subject><subject>Myoelectricity</subject><subject>Neural prostheses</subject><subject>Perturbation</subject><subject>Protocols</subject><subject>Recognition</subject><subject>Robot control</subject><subject>Robots</subject><subject>Robust control</subject><subject>Task analysis</subject><subject>Training</subject><subject>user intent recognition</subject><subject>Wrist</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1rwkAQhpfSQsV676GHQM-xszvJZnNUabVgKUg9L5v9kLWatZuk4L9vrB48zQfPOwMPIY8UxpRC-bJcTcYMGI4RESDHGzJgWBQpFpzfXvX3ZNQ0WwCgOSuwzAdkPY3ebHy9SRbdXtXpKlShTWYhnRh1aFXrQ538epVMfXDWmkrp78SF2BN16-sudE3ycQx2Z3Ubvf5fx7B7IHdO7Ro7utQhWb-9fs0W6fJz_j6bLFONmLUpd9w5zbnKGIqcm36oDBptLXdlJopCMFqJgoKwOstAZRYywYzhCitqtcEheT7fPcTw09mmldvQxbp_KZkogVKKtOwpOFM6hqaJ1slD9HsVj5KCPPmTvT958icv_vrI0znirbVXOAJnIsc_TO9sCA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Hu, Xuhui</creator><creator>Song, Aiguo</creator><creator>Zeng, Hong</creator><creator>Wei, Zhikai</creator><creator>Deng, Hanjie</creator><creator>Chen, Dapeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0001-6820-9164</orcidid><orcidid>https://orcid.org/0000-0002-1930-419X</orcidid><orcidid>https://orcid.org/0000-0002-4587-6263</orcidid><orcidid>https://orcid.org/0009-0000-0747-184X</orcidid><orcidid>https://orcid.org/0000-0001-7632-3090</orcidid><orcidid>https://orcid.org/0000-0002-1982-6780</orcidid></search><sort><creationdate>20231201</creationdate><title>Bridging Human-Robot Co-Adaptation via Biofeedback for Continuous Myoelectric Control</title><author>Hu, Xuhui ; Song, Aiguo ; Zeng, Hong ; Wei, Zhikai ; Deng, Hanjie ; Chen, Dapeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-6f6ffc66a423856dffcbd3dcee6f94877821b87108ec440a4e0482dd6a3b1ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptability</topic><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Automatic control</topic><topic>Biofeedback</topic><topic>Biological system modeling</topic><topic>Completion time</topic><topic>Electrodes</topic><topic>EMG</topic><topic>Human-robot co-adaptation</topic><topic>Machine intelligence</topic><topic>Machine learning</topic><topic>Myoelectric control</topic><topic>Myoelectricity</topic><topic>Neural prostheses</topic><topic>Perturbation</topic><topic>Protocols</topic><topic>Recognition</topic><topic>Robot control</topic><topic>Robots</topic><topic>Robust control</topic><topic>Task analysis</topic><topic>Training</topic><topic>user intent recognition</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xuhui</creatorcontrib><creatorcontrib>Song, Aiguo</creatorcontrib><creatorcontrib>Zeng, Hong</creatorcontrib><creatorcontrib>Wei, Zhikai</creatorcontrib><creatorcontrib>Deng, Hanjie</creatorcontrib><creatorcontrib>Chen, Dapeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xuhui</au><au>Song, Aiguo</au><au>Zeng, Hong</au><au>Wei, Zhikai</au><au>Deng, Hanjie</au><au>Chen, Dapeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging Human-Robot Co-Adaptation via Biofeedback for Continuous Myoelectric Control</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>8</volume><issue>12</issue><spage>8573</spage><epage>8580</epage><pages>8573-8580</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This letter proposes a novel human-robot co-adaptation framework for robust and accurate user intent recognition, specifically in the context of automatic control in assistance robots such as neural prosthetics and rehabilitation devices empowered by electrophysiological signals. Our goal is to incorporate user adaptability early in the training phase to facilitate both machine recognition and user adaptability, rather than relying solely on brute-force machine learning methods. The proposed framework is featured by applying biofeedback-based user adaptive behavior into model training, while the machine can adapt to those changes through online learning. Specifically, this study focuses on the recognition of two-degree-of-freedom simultaneous and continuous wrist movement intentions based on surface electromyogram (sEMG) array signals, and the performance is tested on twelve able-bodied subjects. The co-adaptive evaluation experiment demonstrates the robust control of this method by introducing sEMG electrode displacement as perturbations. Experimental results show that this method improves the completion time of centre-out tasks by 13% compared to conventional methods (Cohen's d = 0.637), and debias 86% of the effect of electrode shift perturbations. This study provides insights into the potential for incorporating human adaptability into machine intelligence to improve user intent recognition and automatic robot control.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3330053</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0001-6820-9164</orcidid><orcidid>https://orcid.org/0000-0002-1930-419X</orcidid><orcidid>https://orcid.org/0000-0002-4587-6263</orcidid><orcidid>https://orcid.org/0009-0000-0747-184X</orcidid><orcidid>https://orcid.org/0000-0001-7632-3090</orcidid><orcidid>https://orcid.org/0000-0002-1982-6780</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2023-12, Vol.8 (12), p.8573-8580 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LRA_2023_3330053 |
source | IEEE Xplore |
subjects | Adaptability Adaptation Adaptation models Adaptive control Automatic control Biofeedback Biological system modeling Completion time Electrodes EMG Human-robot co-adaptation Machine intelligence Machine learning Myoelectric control Myoelectricity Neural prostheses Perturbation Protocols Recognition Robot control Robots Robust control Task analysis Training user intent recognition Wrist |
title | Bridging Human-Robot Co-Adaptation via Biofeedback for Continuous Myoelectric Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20Human-Robot%20Co-Adaptation%20via%20Biofeedback%20for%20Continuous%20Myoelectric%20Control&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Hu,%20Xuhui&rft.date=2023-12-01&rft.volume=8&rft.issue=12&rft.spage=8573&rft.epage=8580&rft.pages=8573-8580&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3330053&rft_dat=%3Cproquest_cross%3E2890111319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890111319&rft_id=info:pmid/&rft_ieee_id=10306285&rfr_iscdi=true |