Bridging Human-Robot Co-Adaptation via Biofeedback for Continuous Myoelectric Control

This letter proposes a novel human-robot co-adaptation framework for robust and accurate user intent recognition, specifically in the context of automatic control in assistance robots such as neural prosthetics and rehabilitation devices empowered by electrophysiological signals. Our goal is to inco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2023-12, Vol.8 (12), p.8573-8580
Hauptverfasser: Hu, Xuhui, Song, Aiguo, Zeng, Hong, Wei, Zhikai, Deng, Hanjie, Chen, Dapeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8580
container_issue 12
container_start_page 8573
container_title IEEE robotics and automation letters
container_volume 8
creator Hu, Xuhui
Song, Aiguo
Zeng, Hong
Wei, Zhikai
Deng, Hanjie
Chen, Dapeng
description This letter proposes a novel human-robot co-adaptation framework for robust and accurate user intent recognition, specifically in the context of automatic control in assistance robots such as neural prosthetics and rehabilitation devices empowered by electrophysiological signals. Our goal is to incorporate user adaptability early in the training phase to facilitate both machine recognition and user adaptability, rather than relying solely on brute-force machine learning methods. The proposed framework is featured by applying biofeedback-based user adaptive behavior into model training, while the machine can adapt to those changes through online learning. Specifically, this study focuses on the recognition of two-degree-of-freedom simultaneous and continuous wrist movement intentions based on surface electromyogram (sEMG) array signals, and the performance is tested on twelve able-bodied subjects. The co-adaptive evaluation experiment demonstrates the robust control of this method by introducing sEMG electrode displacement as perturbations. Experimental results show that this method improves the completion time of centre-out tasks by 13% compared to conventional methods (Cohen's d = 0.637), and debias 86% of the effect of electrode shift perturbations. This study provides insights into the potential for incorporating human adaptability into machine intelligence to improve user intent recognition and automatic robot control.
doi_str_mv 10.1109/LRA.2023.3330053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2023_3330053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10306285</ieee_id><sourcerecordid>2890111319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-6f6ffc66a423856dffcbd3dcee6f94877821b87108ec440a4e0482dd6a3b1ecd3</originalsourceid><addsrcrecordid>eNpNkE1rwkAQhpfSQsV676GHQM-xszvJZnNUabVgKUg9L5v9kLWatZuk4L9vrB48zQfPOwMPIY8UxpRC-bJcTcYMGI4RESDHGzJgWBQpFpzfXvX3ZNQ0WwCgOSuwzAdkPY3ebHy9SRbdXtXpKlShTWYhnRh1aFXrQ538epVMfXDWmkrp78SF2BN16-sudE3ycQx2Z3Ubvf5fx7B7IHdO7Ro7utQhWb-9fs0W6fJz_j6bLFONmLUpd9w5zbnKGIqcm36oDBptLXdlJopCMFqJgoKwOstAZRYywYzhCitqtcEheT7fPcTw09mmldvQxbp_KZkogVKKtOwpOFM6hqaJ1slD9HsVj5KCPPmTvT958icv_vrI0znirbVXOAJnIsc_TO9sCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890111319</pqid></control><display><type>article</type><title>Bridging Human-Robot Co-Adaptation via Biofeedback for Continuous Myoelectric Control</title><source>IEEE Xplore</source><creator>Hu, Xuhui ; Song, Aiguo ; Zeng, Hong ; Wei, Zhikai ; Deng, Hanjie ; Chen, Dapeng</creator><creatorcontrib>Hu, Xuhui ; Song, Aiguo ; Zeng, Hong ; Wei, Zhikai ; Deng, Hanjie ; Chen, Dapeng</creatorcontrib><description>This letter proposes a novel human-robot co-adaptation framework for robust and accurate user intent recognition, specifically in the context of automatic control in assistance robots such as neural prosthetics and rehabilitation devices empowered by electrophysiological signals. Our goal is to incorporate user adaptability early in the training phase to facilitate both machine recognition and user adaptability, rather than relying solely on brute-force machine learning methods. The proposed framework is featured by applying biofeedback-based user adaptive behavior into model training, while the machine can adapt to those changes through online learning. Specifically, this study focuses on the recognition of two-degree-of-freedom simultaneous and continuous wrist movement intentions based on surface electromyogram (sEMG) array signals, and the performance is tested on twelve able-bodied subjects. The co-adaptive evaluation experiment demonstrates the robust control of this method by introducing sEMG electrode displacement as perturbations. Experimental results show that this method improves the completion time of centre-out tasks by 13% compared to conventional methods (Cohen's d = 0.637), and debias 86% of the effect of electrode shift perturbations. This study provides insights into the potential for incorporating human adaptability into machine intelligence to improve user intent recognition and automatic robot control.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3330053</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptability ; Adaptation ; Adaptation models ; Adaptive control ; Automatic control ; Biofeedback ; Biological system modeling ; Completion time ; Electrodes ; EMG ; Human-robot co-adaptation ; Machine intelligence ; Machine learning ; Myoelectric control ; Myoelectricity ; Neural prostheses ; Perturbation ; Protocols ; Recognition ; Robot control ; Robots ; Robust control ; Task analysis ; Training ; user intent recognition ; Wrist</subject><ispartof>IEEE robotics and automation letters, 2023-12, Vol.8 (12), p.8573-8580</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-6f6ffc66a423856dffcbd3dcee6f94877821b87108ec440a4e0482dd6a3b1ecd3</citedby><cites>FETCH-LOGICAL-c334t-6f6ffc66a423856dffcbd3dcee6f94877821b87108ec440a4e0482dd6a3b1ecd3</cites><orcidid>0009-0001-6820-9164 ; 0000-0002-1930-419X ; 0000-0002-4587-6263 ; 0009-0000-0747-184X ; 0000-0001-7632-3090 ; 0000-0002-1982-6780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10306285$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids></links><search><creatorcontrib>Hu, Xuhui</creatorcontrib><creatorcontrib>Song, Aiguo</creatorcontrib><creatorcontrib>Zeng, Hong</creatorcontrib><creatorcontrib>Wei, Zhikai</creatorcontrib><creatorcontrib>Deng, Hanjie</creatorcontrib><creatorcontrib>Chen, Dapeng</creatorcontrib><title>Bridging Human-Robot Co-Adaptation via Biofeedback for Continuous Myoelectric Control</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This letter proposes a novel human-robot co-adaptation framework for robust and accurate user intent recognition, specifically in the context of automatic control in assistance robots such as neural prosthetics and rehabilitation devices empowered by electrophysiological signals. Our goal is to incorporate user adaptability early in the training phase to facilitate both machine recognition and user adaptability, rather than relying solely on brute-force machine learning methods. The proposed framework is featured by applying biofeedback-based user adaptive behavior into model training, while the machine can adapt to those changes through online learning. Specifically, this study focuses on the recognition of two-degree-of-freedom simultaneous and continuous wrist movement intentions based on surface electromyogram (sEMG) array signals, and the performance is tested on twelve able-bodied subjects. The co-adaptive evaluation experiment demonstrates the robust control of this method by introducing sEMG electrode displacement as perturbations. Experimental results show that this method improves the completion time of centre-out tasks by 13% compared to conventional methods (Cohen's d = 0.637), and debias 86% of the effect of electrode shift perturbations. This study provides insights into the potential for incorporating human adaptability into machine intelligence to improve user intent recognition and automatic robot control.</description><subject>Adaptability</subject><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Automatic control</subject><subject>Biofeedback</subject><subject>Biological system modeling</subject><subject>Completion time</subject><subject>Electrodes</subject><subject>EMG</subject><subject>Human-robot co-adaptation</subject><subject>Machine intelligence</subject><subject>Machine learning</subject><subject>Myoelectric control</subject><subject>Myoelectricity</subject><subject>Neural prostheses</subject><subject>Perturbation</subject><subject>Protocols</subject><subject>Recognition</subject><subject>Robot control</subject><subject>Robots</subject><subject>Robust control</subject><subject>Task analysis</subject><subject>Training</subject><subject>user intent recognition</subject><subject>Wrist</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1rwkAQhpfSQsV676GHQM-xszvJZnNUabVgKUg9L5v9kLWatZuk4L9vrB48zQfPOwMPIY8UxpRC-bJcTcYMGI4RESDHGzJgWBQpFpzfXvX3ZNQ0WwCgOSuwzAdkPY3ebHy9SRbdXtXpKlShTWYhnRh1aFXrQ538epVMfXDWmkrp78SF2BN16-sudE3ycQx2Z3Ubvf5fx7B7IHdO7Ro7utQhWb-9fs0W6fJz_j6bLFONmLUpd9w5zbnKGIqcm36oDBptLXdlJopCMFqJgoKwOstAZRYywYzhCitqtcEheT7fPcTw09mmldvQxbp_KZkogVKKtOwpOFM6hqaJ1slD9HsVj5KCPPmTvT958icv_vrI0znirbVXOAJnIsc_TO9sCA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Hu, Xuhui</creator><creator>Song, Aiguo</creator><creator>Zeng, Hong</creator><creator>Wei, Zhikai</creator><creator>Deng, Hanjie</creator><creator>Chen, Dapeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0001-6820-9164</orcidid><orcidid>https://orcid.org/0000-0002-1930-419X</orcidid><orcidid>https://orcid.org/0000-0002-4587-6263</orcidid><orcidid>https://orcid.org/0009-0000-0747-184X</orcidid><orcidid>https://orcid.org/0000-0001-7632-3090</orcidid><orcidid>https://orcid.org/0000-0002-1982-6780</orcidid></search><sort><creationdate>20231201</creationdate><title>Bridging Human-Robot Co-Adaptation via Biofeedback for Continuous Myoelectric Control</title><author>Hu, Xuhui ; Song, Aiguo ; Zeng, Hong ; Wei, Zhikai ; Deng, Hanjie ; Chen, Dapeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-6f6ffc66a423856dffcbd3dcee6f94877821b87108ec440a4e0482dd6a3b1ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptability</topic><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Automatic control</topic><topic>Biofeedback</topic><topic>Biological system modeling</topic><topic>Completion time</topic><topic>Electrodes</topic><topic>EMG</topic><topic>Human-robot co-adaptation</topic><topic>Machine intelligence</topic><topic>Machine learning</topic><topic>Myoelectric control</topic><topic>Myoelectricity</topic><topic>Neural prostheses</topic><topic>Perturbation</topic><topic>Protocols</topic><topic>Recognition</topic><topic>Robot control</topic><topic>Robots</topic><topic>Robust control</topic><topic>Task analysis</topic><topic>Training</topic><topic>user intent recognition</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xuhui</creatorcontrib><creatorcontrib>Song, Aiguo</creatorcontrib><creatorcontrib>Zeng, Hong</creatorcontrib><creatorcontrib>Wei, Zhikai</creatorcontrib><creatorcontrib>Deng, Hanjie</creatorcontrib><creatorcontrib>Chen, Dapeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xuhui</au><au>Song, Aiguo</au><au>Zeng, Hong</au><au>Wei, Zhikai</au><au>Deng, Hanjie</au><au>Chen, Dapeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging Human-Robot Co-Adaptation via Biofeedback for Continuous Myoelectric Control</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>8</volume><issue>12</issue><spage>8573</spage><epage>8580</epage><pages>8573-8580</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This letter proposes a novel human-robot co-adaptation framework for robust and accurate user intent recognition, specifically in the context of automatic control in assistance robots such as neural prosthetics and rehabilitation devices empowered by electrophysiological signals. Our goal is to incorporate user adaptability early in the training phase to facilitate both machine recognition and user adaptability, rather than relying solely on brute-force machine learning methods. The proposed framework is featured by applying biofeedback-based user adaptive behavior into model training, while the machine can adapt to those changes through online learning. Specifically, this study focuses on the recognition of two-degree-of-freedom simultaneous and continuous wrist movement intentions based on surface electromyogram (sEMG) array signals, and the performance is tested on twelve able-bodied subjects. The co-adaptive evaluation experiment demonstrates the robust control of this method by introducing sEMG electrode displacement as perturbations. Experimental results show that this method improves the completion time of centre-out tasks by 13% compared to conventional methods (Cohen's d = 0.637), and debias 86% of the effect of electrode shift perturbations. This study provides insights into the potential for incorporating human adaptability into machine intelligence to improve user intent recognition and automatic robot control.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3330053</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0001-6820-9164</orcidid><orcidid>https://orcid.org/0000-0002-1930-419X</orcidid><orcidid>https://orcid.org/0000-0002-4587-6263</orcidid><orcidid>https://orcid.org/0009-0000-0747-184X</orcidid><orcidid>https://orcid.org/0000-0001-7632-3090</orcidid><orcidid>https://orcid.org/0000-0002-1982-6780</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2023-12, Vol.8 (12), p.8573-8580
issn 2377-3766
2377-3766
language eng
recordid cdi_crossref_primary_10_1109_LRA_2023_3330053
source IEEE Xplore
subjects Adaptability
Adaptation
Adaptation models
Adaptive control
Automatic control
Biofeedback
Biological system modeling
Completion time
Electrodes
EMG
Human-robot co-adaptation
Machine intelligence
Machine learning
Myoelectric control
Myoelectricity
Neural prostheses
Perturbation
Protocols
Recognition
Robot control
Robots
Robust control
Task analysis
Training
user intent recognition
Wrist
title Bridging Human-Robot Co-Adaptation via Biofeedback for Continuous Myoelectric Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20Human-Robot%20Co-Adaptation%20via%20Biofeedback%20for%20Continuous%20Myoelectric%20Control&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Hu,%20Xuhui&rft.date=2023-12-01&rft.volume=8&rft.issue=12&rft.spage=8573&rft.epage=8580&rft.pages=8573-8580&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3330053&rft_dat=%3Cproquest_cross%3E2890111319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890111319&rft_id=info:pmid/&rft_ieee_id=10306285&rfr_iscdi=true