Coordinated Multi-Robot Shared Autonomy Based on Scheduling and Demonstrations
Shared autonomy methods, where a human operator and a robot arm work together, have enabled robots to complete a range of complex and highly variable tasks. Existing work primarily focuses on one human sharing autonomy with a single robot. By contrast, in this letter we present an approach for multi...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2023-12, Vol.8 (12), p.8335-8342 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8342 |
---|---|
container_issue | 12 |
container_start_page | 8335 |
container_title | IEEE robotics and automation letters |
container_volume | 8 |
creator | Hagenow, Michael Senft, Emmanuel Orr, Nitzan Radwin, Robert Gleicher, Michael Mutlu, Bilge Losey, Dylan P. Zinn, Michael |
description | Shared autonomy methods, where a human operator and a robot arm work together, have enabled robots to complete a range of complex and highly variable tasks. Existing work primarily focuses on one human sharing autonomy with a single robot. By contrast, in this letter we present an approach for multi-robot shared autonomy that enables one operator to provide real-time corrections across two coordinated robots completing the same task in parallel. Sharing autonomy with multiple robots presents fundamental challenges. The human can only correct one robot at a time, and without coordination, the human may be left idle for long periods of time. Accordingly, we develop an approach that aligns the robot's learned motions to best utilize the human's expertise. Our key idea is to leverage Learning from Demonstration (LfD) and time warping to schedule the motions of the robots based on when they may require assistance. Our method uses variability in operator demonstrations to identify the types of corrections an operator might apply during shared autonomy, leverages flexibility in how quickly the task was performed in demonstrations to aid in scheduling, and iteratively estimates the likelihood of when corrections may be needed to ensure that only one robot is completing an action requiring assistance. Through a preliminary study, we show that our method can decrease the scheduled time spent sanding by iteratively estimating the times when each robot could need assistance and generating an optimized schedule that allows the operator to provide corrections to each robot during these times. |
doi_str_mv | 10.1109/LRA.2023.3327625 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2023_3327625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10295959</ieee_id><sourcerecordid>2887111767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c160t-8f38e368cc4224be2961a913046d4a35c0b2e1d9ec9232520ca2aba0d6731f383</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiQS5e_CwiefFdrrbbo-InwlqAnpuum2RJdBi2z3w31sCBzKHNzN5byb5IXRL8JgQLB5m88kYMNAxpcAZ1BdoAJTzknLGLs_6azSKcY0xJjVwKuoB-px6H0znVLKm-Og3qSvnvvWpWKxUyKtJn7zz233xqGIevSsWemVNv-ncb6GcKZ7s1ruYgkpd1ht0tVSbaEcnHaKfl-fv6Vs5-3p9n05mpSYMp7JZ0sZS1mhdAVStBcGIEoTiiplK0VrjFiwxwmoBFGrAWoFqFTaMU5KzdIjuj3d3wf_1Nia59n1w-aWEpuGEEJ6tQ4SPLh18jMEu5S50WxX2kmB5ACczOHkAJ0_gcuTuGOmstWd2EHUu-g9YdWiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887111767</pqid></control><display><type>article</type><title>Coordinated Multi-Robot Shared Autonomy Based on Scheduling and Demonstrations</title><source>IEEE Electronic Library (IEL)</source><creator>Hagenow, Michael ; Senft, Emmanuel ; Orr, Nitzan ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Losey, Dylan P. ; Zinn, Michael</creator><creatorcontrib>Hagenow, Michael ; Senft, Emmanuel ; Orr, Nitzan ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Losey, Dylan P. ; Zinn, Michael</creatorcontrib><description>Shared autonomy methods, where a human operator and a robot arm work together, have enabled robots to complete a range of complex and highly variable tasks. Existing work primarily focuses on one human sharing autonomy with a single robot. By contrast, in this letter we present an approach for multi-robot shared autonomy that enables one operator to provide real-time corrections across two coordinated robots completing the same task in parallel. Sharing autonomy with multiple robots presents fundamental challenges. The human can only correct one robot at a time, and without coordination, the human may be left idle for long periods of time. Accordingly, we develop an approach that aligns the robot's learned motions to best utilize the human's expertise. Our key idea is to leverage Learning from Demonstration (LfD) and time warping to schedule the motions of the robots based on when they may require assistance. Our method uses variability in operator demonstrations to identify the types of corrections an operator might apply during shared autonomy, leverages flexibility in how quickly the task was performed in demonstrations to aid in scheduling, and iteratively estimates the likelihood of when corrections may be needed to ensure that only one robot is completing an action requiring assistance. Through a preliminary study, we show that our method can decrease the scheduled time spent sanding by iteratively estimating the times when each robot could need assistance and generating an optimized schedule that allows the operator to provide corrections to each robot during these times.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3327625</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autonomy ; Behavioral sciences ; Human-robot teaming ; learning from demonstration ; multi-robot systems ; Multiple robots ; Robot arms ; Robot kinematics ; Robot sensing systems ; Robots ; Sanding ; Schedules ; Task analysis ; Task complexity ; Task scheduling ; Timing</subject><ispartof>IEEE robotics and automation letters, 2023-12, Vol.8 (12), p.8335-8342</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c160t-8f38e368cc4224be2961a913046d4a35c0b2e1d9ec9232520ca2aba0d6731f383</cites><orcidid>0000-0002-0973-2203 ; 0000-0003-3295-4071 ; 0000-0002-8787-5293 ; 0000-0001-7160-4352 ; 0000-0002-7973-0641 ; 0000-0002-6815-5899 ; 0000-0002-4532-2949 ; 0000-0002-9456-1495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10295959$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10295959$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hagenow, Michael</creatorcontrib><creatorcontrib>Senft, Emmanuel</creatorcontrib><creatorcontrib>Orr, Nitzan</creatorcontrib><creatorcontrib>Radwin, Robert</creatorcontrib><creatorcontrib>Gleicher, Michael</creatorcontrib><creatorcontrib>Mutlu, Bilge</creatorcontrib><creatorcontrib>Losey, Dylan P.</creatorcontrib><creatorcontrib>Zinn, Michael</creatorcontrib><title>Coordinated Multi-Robot Shared Autonomy Based on Scheduling and Demonstrations</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Shared autonomy methods, where a human operator and a robot arm work together, have enabled robots to complete a range of complex and highly variable tasks. Existing work primarily focuses on one human sharing autonomy with a single robot. By contrast, in this letter we present an approach for multi-robot shared autonomy that enables one operator to provide real-time corrections across two coordinated robots completing the same task in parallel. Sharing autonomy with multiple robots presents fundamental challenges. The human can only correct one robot at a time, and without coordination, the human may be left idle for long periods of time. Accordingly, we develop an approach that aligns the robot's learned motions to best utilize the human's expertise. Our key idea is to leverage Learning from Demonstration (LfD) and time warping to schedule the motions of the robots based on when they may require assistance. Our method uses variability in operator demonstrations to identify the types of corrections an operator might apply during shared autonomy, leverages flexibility in how quickly the task was performed in demonstrations to aid in scheduling, and iteratively estimates the likelihood of when corrections may be needed to ensure that only one robot is completing an action requiring assistance. Through a preliminary study, we show that our method can decrease the scheduled time spent sanding by iteratively estimating the times when each robot could need assistance and generating an optimized schedule that allows the operator to provide corrections to each robot during these times.</description><subject>Autonomy</subject><subject>Behavioral sciences</subject><subject>Human-robot teaming</subject><subject>learning from demonstration</subject><subject>multi-robot systems</subject><subject>Multiple robots</subject><subject>Robot arms</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>Sanding</subject><subject>Schedules</subject><subject>Task analysis</subject><subject>Task complexity</subject><subject>Task scheduling</subject><subject>Timing</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PAjEQxRujiQS5e_CwiefFdrrbbo-InwlqAnpuum2RJdBi2z3w31sCBzKHNzN5byb5IXRL8JgQLB5m88kYMNAxpcAZ1BdoAJTzknLGLs_6azSKcY0xJjVwKuoB-px6H0znVLKm-Og3qSvnvvWpWKxUyKtJn7zz233xqGIevSsWemVNv-ncb6GcKZ7s1ruYgkpd1ht0tVSbaEcnHaKfl-fv6Vs5-3p9n05mpSYMp7JZ0sZS1mhdAVStBcGIEoTiiplK0VrjFiwxwmoBFGrAWoFqFTaMU5KzdIjuj3d3wf_1Nia59n1w-aWEpuGEEJ6tQ4SPLh18jMEu5S50WxX2kmB5ACczOHkAJ0_gcuTuGOmstWd2EHUu-g9YdWiA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Hagenow, Michael</creator><creator>Senft, Emmanuel</creator><creator>Orr, Nitzan</creator><creator>Radwin, Robert</creator><creator>Gleicher, Michael</creator><creator>Mutlu, Bilge</creator><creator>Losey, Dylan P.</creator><creator>Zinn, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0973-2203</orcidid><orcidid>https://orcid.org/0000-0003-3295-4071</orcidid><orcidid>https://orcid.org/0000-0002-8787-5293</orcidid><orcidid>https://orcid.org/0000-0001-7160-4352</orcidid><orcidid>https://orcid.org/0000-0002-7973-0641</orcidid><orcidid>https://orcid.org/0000-0002-6815-5899</orcidid><orcidid>https://orcid.org/0000-0002-4532-2949</orcidid><orcidid>https://orcid.org/0000-0002-9456-1495</orcidid></search><sort><creationdate>20231201</creationdate><title>Coordinated Multi-Robot Shared Autonomy Based on Scheduling and Demonstrations</title><author>Hagenow, Michael ; Senft, Emmanuel ; Orr, Nitzan ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Losey, Dylan P. ; Zinn, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c160t-8f38e368cc4224be2961a913046d4a35c0b2e1d9ec9232520ca2aba0d6731f383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autonomy</topic><topic>Behavioral sciences</topic><topic>Human-robot teaming</topic><topic>learning from demonstration</topic><topic>multi-robot systems</topic><topic>Multiple robots</topic><topic>Robot arms</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>Sanding</topic><topic>Schedules</topic><topic>Task analysis</topic><topic>Task complexity</topic><topic>Task scheduling</topic><topic>Timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagenow, Michael</creatorcontrib><creatorcontrib>Senft, Emmanuel</creatorcontrib><creatorcontrib>Orr, Nitzan</creatorcontrib><creatorcontrib>Radwin, Robert</creatorcontrib><creatorcontrib>Gleicher, Michael</creatorcontrib><creatorcontrib>Mutlu, Bilge</creatorcontrib><creatorcontrib>Losey, Dylan P.</creatorcontrib><creatorcontrib>Zinn, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hagenow, Michael</au><au>Senft, Emmanuel</au><au>Orr, Nitzan</au><au>Radwin, Robert</au><au>Gleicher, Michael</au><au>Mutlu, Bilge</au><au>Losey, Dylan P.</au><au>Zinn, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordinated Multi-Robot Shared Autonomy Based on Scheduling and Demonstrations</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>8</volume><issue>12</issue><spage>8335</spage><epage>8342</epage><pages>8335-8342</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Shared autonomy methods, where a human operator and a robot arm work together, have enabled robots to complete a range of complex and highly variable tasks. Existing work primarily focuses on one human sharing autonomy with a single robot. By contrast, in this letter we present an approach for multi-robot shared autonomy that enables one operator to provide real-time corrections across two coordinated robots completing the same task in parallel. Sharing autonomy with multiple robots presents fundamental challenges. The human can only correct one robot at a time, and without coordination, the human may be left idle for long periods of time. Accordingly, we develop an approach that aligns the robot's learned motions to best utilize the human's expertise. Our key idea is to leverage Learning from Demonstration (LfD) and time warping to schedule the motions of the robots based on when they may require assistance. Our method uses variability in operator demonstrations to identify the types of corrections an operator might apply during shared autonomy, leverages flexibility in how quickly the task was performed in demonstrations to aid in scheduling, and iteratively estimates the likelihood of when corrections may be needed to ensure that only one robot is completing an action requiring assistance. Through a preliminary study, we show that our method can decrease the scheduled time spent sanding by iteratively estimating the times when each robot could need assistance and generating an optimized schedule that allows the operator to provide corrections to each robot during these times.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3327625</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0973-2203</orcidid><orcidid>https://orcid.org/0000-0003-3295-4071</orcidid><orcidid>https://orcid.org/0000-0002-8787-5293</orcidid><orcidid>https://orcid.org/0000-0001-7160-4352</orcidid><orcidid>https://orcid.org/0000-0002-7973-0641</orcidid><orcidid>https://orcid.org/0000-0002-6815-5899</orcidid><orcidid>https://orcid.org/0000-0002-4532-2949</orcidid><orcidid>https://orcid.org/0000-0002-9456-1495</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2023-12, Vol.8 (12), p.8335-8342 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LRA_2023_3327625 |
source | IEEE Electronic Library (IEL) |
subjects | Autonomy Behavioral sciences Human-robot teaming learning from demonstration multi-robot systems Multiple robots Robot arms Robot kinematics Robot sensing systems Robots Sanding Schedules Task analysis Task complexity Task scheduling Timing |
title | Coordinated Multi-Robot Shared Autonomy Based on Scheduling and Demonstrations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordinated%20Multi-Robot%20Shared%20Autonomy%20Based%20on%20Scheduling%20and%20Demonstrations&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Hagenow,%20Michael&rft.date=2023-12-01&rft.volume=8&rft.issue=12&rft.spage=8335&rft.epage=8342&rft.pages=8335-8342&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3327625&rft_dat=%3Cproquest_RIE%3E2887111767%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887111767&rft_id=info:pmid/&rft_ieee_id=10295959&rfr_iscdi=true |