Coordinated Multi-Robot Shared Autonomy Based on Scheduling and Demonstrations

Shared autonomy methods, where a human operator and a robot arm work together, have enabled robots to complete a range of complex and highly variable tasks. Existing work primarily focuses on one human sharing autonomy with a single robot. By contrast, in this letter we present an approach for multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2023-12, Vol.8 (12), p.8335-8342
Hauptverfasser: Hagenow, Michael, Senft, Emmanuel, Orr, Nitzan, Radwin, Robert, Gleicher, Michael, Mutlu, Bilge, Losey, Dylan P., Zinn, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8342
container_issue 12
container_start_page 8335
container_title IEEE robotics and automation letters
container_volume 8
creator Hagenow, Michael
Senft, Emmanuel
Orr, Nitzan
Radwin, Robert
Gleicher, Michael
Mutlu, Bilge
Losey, Dylan P.
Zinn, Michael
description Shared autonomy methods, where a human operator and a robot arm work together, have enabled robots to complete a range of complex and highly variable tasks. Existing work primarily focuses on one human sharing autonomy with a single robot. By contrast, in this letter we present an approach for multi-robot shared autonomy that enables one operator to provide real-time corrections across two coordinated robots completing the same task in parallel. Sharing autonomy with multiple robots presents fundamental challenges. The human can only correct one robot at a time, and without coordination, the human may be left idle for long periods of time. Accordingly, we develop an approach that aligns the robot's learned motions to best utilize the human's expertise. Our key idea is to leverage Learning from Demonstration (LfD) and time warping to schedule the motions of the robots based on when they may require assistance. Our method uses variability in operator demonstrations to identify the types of corrections an operator might apply during shared autonomy, leverages flexibility in how quickly the task was performed in demonstrations to aid in scheduling, and iteratively estimates the likelihood of when corrections may be needed to ensure that only one robot is completing an action requiring assistance. Through a preliminary study, we show that our method can decrease the scheduled time spent sanding by iteratively estimating the times when each robot could need assistance and generating an optimized schedule that allows the operator to provide corrections to each robot during these times.
doi_str_mv 10.1109/LRA.2023.3327625
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2023_3327625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10295959</ieee_id><sourcerecordid>2887111767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c160t-8f38e368cc4224be2961a913046d4a35c0b2e1d9ec9232520ca2aba0d6731f383</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiQS5e_CwiefFdrrbbo-InwlqAnpuum2RJdBi2z3w31sCBzKHNzN5byb5IXRL8JgQLB5m88kYMNAxpcAZ1BdoAJTzknLGLs_6azSKcY0xJjVwKuoB-px6H0znVLKm-Og3qSvnvvWpWKxUyKtJn7zz233xqGIevSsWemVNv-ncb6GcKZ7s1ruYgkpd1ht0tVSbaEcnHaKfl-fv6Vs5-3p9n05mpSYMp7JZ0sZS1mhdAVStBcGIEoTiiplK0VrjFiwxwmoBFGrAWoFqFTaMU5KzdIjuj3d3wf_1Nia59n1w-aWEpuGEEJ6tQ4SPLh18jMEu5S50WxX2kmB5ACczOHkAJ0_gcuTuGOmstWd2EHUu-g9YdWiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887111767</pqid></control><display><type>article</type><title>Coordinated Multi-Robot Shared Autonomy Based on Scheduling and Demonstrations</title><source>IEEE Electronic Library (IEL)</source><creator>Hagenow, Michael ; Senft, Emmanuel ; Orr, Nitzan ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Losey, Dylan P. ; Zinn, Michael</creator><creatorcontrib>Hagenow, Michael ; Senft, Emmanuel ; Orr, Nitzan ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Losey, Dylan P. ; Zinn, Michael</creatorcontrib><description>Shared autonomy methods, where a human operator and a robot arm work together, have enabled robots to complete a range of complex and highly variable tasks. Existing work primarily focuses on one human sharing autonomy with a single robot. By contrast, in this letter we present an approach for multi-robot shared autonomy that enables one operator to provide real-time corrections across two coordinated robots completing the same task in parallel. Sharing autonomy with multiple robots presents fundamental challenges. The human can only correct one robot at a time, and without coordination, the human may be left idle for long periods of time. Accordingly, we develop an approach that aligns the robot's learned motions to best utilize the human's expertise. Our key idea is to leverage Learning from Demonstration (LfD) and time warping to schedule the motions of the robots based on when they may require assistance. Our method uses variability in operator demonstrations to identify the types of corrections an operator might apply during shared autonomy, leverages flexibility in how quickly the task was performed in demonstrations to aid in scheduling, and iteratively estimates the likelihood of when corrections may be needed to ensure that only one robot is completing an action requiring assistance. Through a preliminary study, we show that our method can decrease the scheduled time spent sanding by iteratively estimating the times when each robot could need assistance and generating an optimized schedule that allows the operator to provide corrections to each robot during these times.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3327625</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autonomy ; Behavioral sciences ; Human-robot teaming ; learning from demonstration ; multi-robot systems ; Multiple robots ; Robot arms ; Robot kinematics ; Robot sensing systems ; Robots ; Sanding ; Schedules ; Task analysis ; Task complexity ; Task scheduling ; Timing</subject><ispartof>IEEE robotics and automation letters, 2023-12, Vol.8 (12), p.8335-8342</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c160t-8f38e368cc4224be2961a913046d4a35c0b2e1d9ec9232520ca2aba0d6731f383</cites><orcidid>0000-0002-0973-2203 ; 0000-0003-3295-4071 ; 0000-0002-8787-5293 ; 0000-0001-7160-4352 ; 0000-0002-7973-0641 ; 0000-0002-6815-5899 ; 0000-0002-4532-2949 ; 0000-0002-9456-1495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10295959$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10295959$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hagenow, Michael</creatorcontrib><creatorcontrib>Senft, Emmanuel</creatorcontrib><creatorcontrib>Orr, Nitzan</creatorcontrib><creatorcontrib>Radwin, Robert</creatorcontrib><creatorcontrib>Gleicher, Michael</creatorcontrib><creatorcontrib>Mutlu, Bilge</creatorcontrib><creatorcontrib>Losey, Dylan P.</creatorcontrib><creatorcontrib>Zinn, Michael</creatorcontrib><title>Coordinated Multi-Robot Shared Autonomy Based on Scheduling and Demonstrations</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Shared autonomy methods, where a human operator and a robot arm work together, have enabled robots to complete a range of complex and highly variable tasks. Existing work primarily focuses on one human sharing autonomy with a single robot. By contrast, in this letter we present an approach for multi-robot shared autonomy that enables one operator to provide real-time corrections across two coordinated robots completing the same task in parallel. Sharing autonomy with multiple robots presents fundamental challenges. The human can only correct one robot at a time, and without coordination, the human may be left idle for long periods of time. Accordingly, we develop an approach that aligns the robot's learned motions to best utilize the human's expertise. Our key idea is to leverage Learning from Demonstration (LfD) and time warping to schedule the motions of the robots based on when they may require assistance. Our method uses variability in operator demonstrations to identify the types of corrections an operator might apply during shared autonomy, leverages flexibility in how quickly the task was performed in demonstrations to aid in scheduling, and iteratively estimates the likelihood of when corrections may be needed to ensure that only one robot is completing an action requiring assistance. Through a preliminary study, we show that our method can decrease the scheduled time spent sanding by iteratively estimating the times when each robot could need assistance and generating an optimized schedule that allows the operator to provide corrections to each robot during these times.</description><subject>Autonomy</subject><subject>Behavioral sciences</subject><subject>Human-robot teaming</subject><subject>learning from demonstration</subject><subject>multi-robot systems</subject><subject>Multiple robots</subject><subject>Robot arms</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>Sanding</subject><subject>Schedules</subject><subject>Task analysis</subject><subject>Task complexity</subject><subject>Task scheduling</subject><subject>Timing</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PAjEQxRujiQS5e_CwiefFdrrbbo-InwlqAnpuum2RJdBi2z3w31sCBzKHNzN5byb5IXRL8JgQLB5m88kYMNAxpcAZ1BdoAJTzknLGLs_6azSKcY0xJjVwKuoB-px6H0znVLKm-Og3qSvnvvWpWKxUyKtJn7zz233xqGIevSsWemVNv-ncb6GcKZ7s1ruYgkpd1ht0tVSbaEcnHaKfl-fv6Vs5-3p9n05mpSYMp7JZ0sZS1mhdAVStBcGIEoTiiplK0VrjFiwxwmoBFGrAWoFqFTaMU5KzdIjuj3d3wf_1Nia59n1w-aWEpuGEEJ6tQ4SPLh18jMEu5S50WxX2kmB5ACczOHkAJ0_gcuTuGOmstWd2EHUu-g9YdWiA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Hagenow, Michael</creator><creator>Senft, Emmanuel</creator><creator>Orr, Nitzan</creator><creator>Radwin, Robert</creator><creator>Gleicher, Michael</creator><creator>Mutlu, Bilge</creator><creator>Losey, Dylan P.</creator><creator>Zinn, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0973-2203</orcidid><orcidid>https://orcid.org/0000-0003-3295-4071</orcidid><orcidid>https://orcid.org/0000-0002-8787-5293</orcidid><orcidid>https://orcid.org/0000-0001-7160-4352</orcidid><orcidid>https://orcid.org/0000-0002-7973-0641</orcidid><orcidid>https://orcid.org/0000-0002-6815-5899</orcidid><orcidid>https://orcid.org/0000-0002-4532-2949</orcidid><orcidid>https://orcid.org/0000-0002-9456-1495</orcidid></search><sort><creationdate>20231201</creationdate><title>Coordinated Multi-Robot Shared Autonomy Based on Scheduling and Demonstrations</title><author>Hagenow, Michael ; Senft, Emmanuel ; Orr, Nitzan ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Losey, Dylan P. ; Zinn, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c160t-8f38e368cc4224be2961a913046d4a35c0b2e1d9ec9232520ca2aba0d6731f383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autonomy</topic><topic>Behavioral sciences</topic><topic>Human-robot teaming</topic><topic>learning from demonstration</topic><topic>multi-robot systems</topic><topic>Multiple robots</topic><topic>Robot arms</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>Sanding</topic><topic>Schedules</topic><topic>Task analysis</topic><topic>Task complexity</topic><topic>Task scheduling</topic><topic>Timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagenow, Michael</creatorcontrib><creatorcontrib>Senft, Emmanuel</creatorcontrib><creatorcontrib>Orr, Nitzan</creatorcontrib><creatorcontrib>Radwin, Robert</creatorcontrib><creatorcontrib>Gleicher, Michael</creatorcontrib><creatorcontrib>Mutlu, Bilge</creatorcontrib><creatorcontrib>Losey, Dylan P.</creatorcontrib><creatorcontrib>Zinn, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hagenow, Michael</au><au>Senft, Emmanuel</au><au>Orr, Nitzan</au><au>Radwin, Robert</au><au>Gleicher, Michael</au><au>Mutlu, Bilge</au><au>Losey, Dylan P.</au><au>Zinn, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordinated Multi-Robot Shared Autonomy Based on Scheduling and Demonstrations</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>8</volume><issue>12</issue><spage>8335</spage><epage>8342</epage><pages>8335-8342</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Shared autonomy methods, where a human operator and a robot arm work together, have enabled robots to complete a range of complex and highly variable tasks. Existing work primarily focuses on one human sharing autonomy with a single robot. By contrast, in this letter we present an approach for multi-robot shared autonomy that enables one operator to provide real-time corrections across two coordinated robots completing the same task in parallel. Sharing autonomy with multiple robots presents fundamental challenges. The human can only correct one robot at a time, and without coordination, the human may be left idle for long periods of time. Accordingly, we develop an approach that aligns the robot's learned motions to best utilize the human's expertise. Our key idea is to leverage Learning from Demonstration (LfD) and time warping to schedule the motions of the robots based on when they may require assistance. Our method uses variability in operator demonstrations to identify the types of corrections an operator might apply during shared autonomy, leverages flexibility in how quickly the task was performed in demonstrations to aid in scheduling, and iteratively estimates the likelihood of when corrections may be needed to ensure that only one robot is completing an action requiring assistance. Through a preliminary study, we show that our method can decrease the scheduled time spent sanding by iteratively estimating the times when each robot could need assistance and generating an optimized schedule that allows the operator to provide corrections to each robot during these times.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3327625</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0973-2203</orcidid><orcidid>https://orcid.org/0000-0003-3295-4071</orcidid><orcidid>https://orcid.org/0000-0002-8787-5293</orcidid><orcidid>https://orcid.org/0000-0001-7160-4352</orcidid><orcidid>https://orcid.org/0000-0002-7973-0641</orcidid><orcidid>https://orcid.org/0000-0002-6815-5899</orcidid><orcidid>https://orcid.org/0000-0002-4532-2949</orcidid><orcidid>https://orcid.org/0000-0002-9456-1495</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2023-12, Vol.8 (12), p.8335-8342
issn 2377-3766
2377-3766
language eng
recordid cdi_crossref_primary_10_1109_LRA_2023_3327625
source IEEE Electronic Library (IEL)
subjects Autonomy
Behavioral sciences
Human-robot teaming
learning from demonstration
multi-robot systems
Multiple robots
Robot arms
Robot kinematics
Robot sensing systems
Robots
Sanding
Schedules
Task analysis
Task complexity
Task scheduling
Timing
title Coordinated Multi-Robot Shared Autonomy Based on Scheduling and Demonstrations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordinated%20Multi-Robot%20Shared%20Autonomy%20Based%20on%20Scheduling%20and%20Demonstrations&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Hagenow,%20Michael&rft.date=2023-12-01&rft.volume=8&rft.issue=12&rft.spage=8335&rft.epage=8342&rft.pages=8335-8342&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3327625&rft_dat=%3Cproquest_RIE%3E2887111767%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887111767&rft_id=info:pmid/&rft_ieee_id=10295959&rfr_iscdi=true