Navya3DSeg - Navya 3D Semantic Segmentation Dataset Design & split generation for autonomous vehicles
Autonomous driving (AD) perception today relies heavily on deep learning based architectures requiring large scale annotated datasets with their associated costs for curation and annotation. The 3D semantic data are useful for core perception tasks such as obstacle detection and ego-vehicle localiza...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2023-09, Vol.8 (9), p.1-8 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | IEEE robotics and automation letters |
container_volume | 8 |
creator | Almin, Alexandre Lemarie, Leo Duong, Anh Kiran, B Ravi |
description | Autonomous driving (AD) perception today relies heavily on deep learning based architectures requiring large scale annotated datasets with their associated costs for curation and annotation. The 3D semantic data are useful for core perception tasks such as obstacle detection and ego-vehicle localization. We propose a new dataset, Navya 3D Segmentation (Navya3DSeg), with a diverse label space corresponding to a large scale production grade operational domain, including rural, urban, industrial sites and universities from 13 countries. It contains 23 labeled sequences and 25 supplementary sequences without labels, designed to explore self-supervised and semi-supervised semantic segmentation benchmarks on point clouds. We also propose a novel method for sequential dataset split generation based on iterative multi-label stratification, and demonstrated to achieve a +1.2% mIoU improvement over the original split proposed by SemanticKITTI dataset. A complete benchmark for semantic segmentation task was performed, with state of the art methods. Finally, we demonstrate an Active Learning (AL) based dataset distillation framework. We introduce a novel heuristic-free sampling method called ego-pose distance based sampling in the context of AL. A detailed presentation on the dataset is available here https://www.youtube.com/watch?v=5m6ALIs-s20 . |
doi_str_mv | 10.1109/LRA.2023.3290516 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2023_3290516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10168231</ieee_id><sourcerecordid>2842168440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-3e5f73aa6622d9bb6fa10211c41dad44a62095105a98de22a1a6f23fd08467bb3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNTePXhYELyl7lc2ybE0fkFRsHpeJskkpjTZmt0U-u9NTQ89zTvwvDPwEHLL2ZxzljyuPhdzwYScS5GwkOsLMhEyigIZaX15lq_JzLkNY4yHIpJJOCH4DvsDyHSNFQ3o_0JlStfYQOvrfAhVg60HX9uWpuDBoacpurpq6QN1u23taYUtdiNR2o5C721rG9s7usefOt-iuyFXJWwdzk5zSr6fn76Wr8Hq4-VtuVgFuVChDySGZSQBtBaiSLJMl8CZ4DxXvIBCKdCCJSFnISRxgUIAB10KWRYsVjrKMjkl9-PdXWd_e3TebGzftcNLI2IluI6VYgPFRirvrHMdlmbX1Q10B8OZOfo0g09z9GlOPofK3VipEfEMHy4KyeUfy9hwMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842168440</pqid></control><display><type>article</type><title>Navya3DSeg - Navya 3D Semantic Segmentation Dataset Design & split generation for autonomous vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Almin, Alexandre ; Lemarie, Leo ; Duong, Anh ; Kiran, B Ravi</creator><creatorcontrib>Almin, Alexandre ; Lemarie, Leo ; Duong, Anh ; Kiran, B Ravi</creatorcontrib><description>Autonomous driving (AD) perception today relies heavily on deep learning based architectures requiring large scale annotated datasets with their associated costs for curation and annotation. The 3D semantic data are useful for core perception tasks such as obstacle detection and ego-vehicle localization. We propose a new dataset, Navya 3D Segmentation (Navya3DSeg), with a diverse label space corresponding to a large scale production grade operational domain, including rural, urban, industrial sites and universities from 13 countries. It contains 23 labeled sequences and 25 supplementary sequences without labels, designed to explore self-supervised and semi-supervised semantic segmentation benchmarks on point clouds. We also propose a novel method for sequential dataset split generation based on iterative multi-label stratification, and demonstrated to achieve a +1.2% mIoU improvement over the original split proposed by SemanticKITTI dataset. A complete benchmark for semantic segmentation task was performed, with state of the art methods. Finally, we demonstrate an Active Learning (AL) based dataset distillation framework. We introduce a novel heuristic-free sampling method called ego-pose distance based sampling in the context of AL. A detailed presentation on the dataset is available here https://www.youtube.com/watch?v=5m6ALIs-s20 .</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3290516</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annotations ; Autonomous Vehicle Navigation ; Benchmarks ; Data Sets for Robotic Vision ; Datasets ; Deep learning ; Deep Learning Methods ; Distillation ; Image segmentation ; Laser radar ; Mapping ; Obstacle avoidance ; Perception ; Point cloud compression ; Sampling methods ; Semantic Scene Understanding ; Semantic segmentation ; Semantics ; Task analysis ; Three-dimensional displays</subject><ispartof>IEEE robotics and automation letters, 2023-09, Vol.8 (9), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-3e5f73aa6622d9bb6fa10211c41dad44a62095105a98de22a1a6f23fd08467bb3</cites><orcidid>0000-0002-8641-7530 ; 0000-0002-5477-076X ; 0000-0001-9336-6420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10168231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10168231$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Almin, Alexandre</creatorcontrib><creatorcontrib>Lemarie, Leo</creatorcontrib><creatorcontrib>Duong, Anh</creatorcontrib><creatorcontrib>Kiran, B Ravi</creatorcontrib><title>Navya3DSeg - Navya 3D Semantic Segmentation Dataset Design & split generation for autonomous vehicles</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Autonomous driving (AD) perception today relies heavily on deep learning based architectures requiring large scale annotated datasets with their associated costs for curation and annotation. The 3D semantic data are useful for core perception tasks such as obstacle detection and ego-vehicle localization. We propose a new dataset, Navya 3D Segmentation (Navya3DSeg), with a diverse label space corresponding to a large scale production grade operational domain, including rural, urban, industrial sites and universities from 13 countries. It contains 23 labeled sequences and 25 supplementary sequences without labels, designed to explore self-supervised and semi-supervised semantic segmentation benchmarks on point clouds. We also propose a novel method for sequential dataset split generation based on iterative multi-label stratification, and demonstrated to achieve a +1.2% mIoU improvement over the original split proposed by SemanticKITTI dataset. A complete benchmark for semantic segmentation task was performed, with state of the art methods. Finally, we demonstrate an Active Learning (AL) based dataset distillation framework. We introduce a novel heuristic-free sampling method called ego-pose distance based sampling in the context of AL. A detailed presentation on the dataset is available here https://www.youtube.com/watch?v=5m6ALIs-s20 .</description><subject>Annotations</subject><subject>Autonomous Vehicle Navigation</subject><subject>Benchmarks</subject><subject>Data Sets for Robotic Vision</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Deep Learning Methods</subject><subject>Distillation</subject><subject>Image segmentation</subject><subject>Laser radar</subject><subject>Mapping</subject><subject>Obstacle avoidance</subject><subject>Perception</subject><subject>Point cloud compression</subject><subject>Sampling methods</subject><subject>Semantic Scene Understanding</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsNTePXhYELyl7lc2ybE0fkFRsHpeJskkpjTZmt0U-u9NTQ89zTvwvDPwEHLL2ZxzljyuPhdzwYScS5GwkOsLMhEyigIZaX15lq_JzLkNY4yHIpJJOCH4DvsDyHSNFQ3o_0JlStfYQOvrfAhVg60HX9uWpuDBoacpurpq6QN1u23taYUtdiNR2o5C721rG9s7usefOt-iuyFXJWwdzk5zSr6fn76Wr8Hq4-VtuVgFuVChDySGZSQBtBaiSLJMl8CZ4DxXvIBCKdCCJSFnISRxgUIAB10KWRYsVjrKMjkl9-PdXWd_e3TebGzftcNLI2IluI6VYgPFRirvrHMdlmbX1Q10B8OZOfo0g09z9GlOPofK3VipEfEMHy4KyeUfy9hwMg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Almin, Alexandre</creator><creator>Lemarie, Leo</creator><creator>Duong, Anh</creator><creator>Kiran, B Ravi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8641-7530</orcidid><orcidid>https://orcid.org/0000-0002-5477-076X</orcidid><orcidid>https://orcid.org/0000-0001-9336-6420</orcidid></search><sort><creationdate>20230901</creationdate><title>Navya3DSeg - Navya 3D Semantic Segmentation Dataset Design & split generation for autonomous vehicles</title><author>Almin, Alexandre ; Lemarie, Leo ; Duong, Anh ; Kiran, B Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-3e5f73aa6622d9bb6fa10211c41dad44a62095105a98de22a1a6f23fd08467bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annotations</topic><topic>Autonomous Vehicle Navigation</topic><topic>Benchmarks</topic><topic>Data Sets for Robotic Vision</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Deep Learning Methods</topic><topic>Distillation</topic><topic>Image segmentation</topic><topic>Laser radar</topic><topic>Mapping</topic><topic>Obstacle avoidance</topic><topic>Perception</topic><topic>Point cloud compression</topic><topic>Sampling methods</topic><topic>Semantic Scene Understanding</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almin, Alexandre</creatorcontrib><creatorcontrib>Lemarie, Leo</creatorcontrib><creatorcontrib>Duong, Anh</creatorcontrib><creatorcontrib>Kiran, B Ravi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Almin, Alexandre</au><au>Lemarie, Leo</au><au>Duong, Anh</au><au>Kiran, B Ravi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Navya3DSeg - Navya 3D Semantic Segmentation Dataset Design & split generation for autonomous vehicles</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>8</volume><issue>9</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Autonomous driving (AD) perception today relies heavily on deep learning based architectures requiring large scale annotated datasets with their associated costs for curation and annotation. The 3D semantic data are useful for core perception tasks such as obstacle detection and ego-vehicle localization. We propose a new dataset, Navya 3D Segmentation (Navya3DSeg), with a diverse label space corresponding to a large scale production grade operational domain, including rural, urban, industrial sites and universities from 13 countries. It contains 23 labeled sequences and 25 supplementary sequences without labels, designed to explore self-supervised and semi-supervised semantic segmentation benchmarks on point clouds. We also propose a novel method for sequential dataset split generation based on iterative multi-label stratification, and demonstrated to achieve a +1.2% mIoU improvement over the original split proposed by SemanticKITTI dataset. A complete benchmark for semantic segmentation task was performed, with state of the art methods. Finally, we demonstrate an Active Learning (AL) based dataset distillation framework. We introduce a novel heuristic-free sampling method called ego-pose distance based sampling in the context of AL. A detailed presentation on the dataset is available here https://www.youtube.com/watch?v=5m6ALIs-s20 .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3290516</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8641-7530</orcidid><orcidid>https://orcid.org/0000-0002-5477-076X</orcidid><orcidid>https://orcid.org/0000-0001-9336-6420</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2023-09, Vol.8 (9), p.1-8 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LRA_2023_3290516 |
source | IEEE Electronic Library (IEL) |
subjects | Annotations Autonomous Vehicle Navigation Benchmarks Data Sets for Robotic Vision Datasets Deep learning Deep Learning Methods Distillation Image segmentation Laser radar Mapping Obstacle avoidance Perception Point cloud compression Sampling methods Semantic Scene Understanding Semantic segmentation Semantics Task analysis Three-dimensional displays |
title | Navya3DSeg - Navya 3D Semantic Segmentation Dataset Design & split generation for autonomous vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T11%3A27%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Navya3DSeg%20-%20Navya%203D%20Semantic%20Segmentation%20Dataset%20Design%20&%20split%20generation%20for%20autonomous%20vehicles&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Almin,%20Alexandre&rft.date=2023-09-01&rft.volume=8&rft.issue=9&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3290516&rft_dat=%3Cproquest_RIE%3E2842168440%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842168440&rft_id=info:pmid/&rft_ieee_id=10168231&rfr_iscdi=true |