RGB-D Inertial Odometry for a Resource-Restricted Robot in Dynamic Environments
Current simultaneous localization and mapping (SLAM) algorithms perform well in static environments but easily fail in dynamic environments. Recent works introduce deep learning-based semantic information to SLAM systems to reduce the influence of dynamic objects. However, it is still challenging to...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2022-10, Vol.7 (4), p.9573-9580 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9580 |
---|---|
container_issue | 4 |
container_start_page | 9573 |
container_title | IEEE robotics and automation letters |
container_volume | 7 |
creator | Liu, Jianheng Li, Xuanfu Liu, Yueqian Chen, Haoyao |
description | Current simultaneous localization and mapping (SLAM) algorithms perform well in static environments but easily fail in dynamic environments. Recent works introduce deep learning-based semantic information to SLAM systems to reduce the influence of dynamic objects. However, it is still challenging to apply a robust localization in dynamic environments for resource-restricted robots. This paper proposes a real-time RGB-D inertial odometry system for resource-restricted robots in dynamic environments named Dynamic-VINS. Three main threads run in parallel: object detection, feature tracking, and state optimization. The proposed Dynamic-VINS combines object detection and depth information for dynamic feature recognition and achieves performance comparable to semantic segmentation. Dynamic-VINS adopts grid-based feature detection and proposes a fast and efficient method to extract high-quality FAST feature points. IMU is applied to predict motion for feature tracking and moving consistency check. The proposed method is evaluated on both public datasets and real-world applications and shows competitive localization accuracy and robustness in dynamic environments. Yet, to the best of our knowledge, it is the best-performance real-time RGB-D inertial odometry for resource-restricted platforms in dynamic environments for now. The proposed system is open source at: https://github.com/HITSZ-NRSL/Dynamic-VINS.git |
doi_str_mv | 10.1109/LRA.2022.3191193 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2022_3191193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9830851</ieee_id><sourcerecordid>2695143254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-55e7654ba4e813d6633aaf4779b8d9a7aa2aecebd3e2511f0f9704dee25875b83</originalsourceid><addsrcrecordid>eNpNkEtrwzAQhEVpoSHNvdCLoGeneliWdUzzaiAQMO1ZyPYaFGIplZVC_n0VEkpPOwszu8OH0DMlU0qJettWsykjjE05VZQqfodGjEuZcVkU9__0I5oMw54QQgWTXIkR2lXr92yBNw5CtOaAd63vIYYz7nzABlcw-FNoIEsiBttEaHHlax-xdXhxdqa3DV66Hxu868HF4Qk9dOYwwOQ2x-hrtfycf2Tb3Xozn22zhikaMyFAFiKvTQ4l5W1RcG5Ml0up6rJVRhrDDDRQtxyYoLQjnZIkbyFtpRR1ycfo9Xr3GPz3KZXT-1TUpZeaFUrQnDORJxe5uprghyFAp4_B9iacNSX6Qk4ncvpCTt_IpcjLNWIB4M-uSk5KQfkvH51o1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695143254</pqid></control><display><type>article</type><title>RGB-D Inertial Odometry for a Resource-Restricted Robot in Dynamic Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jianheng ; Li, Xuanfu ; Liu, Yueqian ; Chen, Haoyao</creator><creatorcontrib>Liu, Jianheng ; Li, Xuanfu ; Liu, Yueqian ; Chen, Haoyao</creatorcontrib><description>Current simultaneous localization and mapping (SLAM) algorithms perform well in static environments but easily fail in dynamic environments. Recent works introduce deep learning-based semantic information to SLAM systems to reduce the influence of dynamic objects. However, it is still challenging to apply a robust localization in dynamic environments for resource-restricted robots. This paper proposes a real-time RGB-D inertial odometry system for resource-restricted robots in dynamic environments named Dynamic-VINS. Three main threads run in parallel: object detection, feature tracking, and state optimization. The proposed Dynamic-VINS combines object detection and depth information for dynamic feature recognition and achieves performance comparable to semantic segmentation. Dynamic-VINS adopts grid-based feature detection and proposes a fast and efficient method to extract high-quality FAST feature points. IMU is applied to predict motion for feature tracking and moving consistency check. The proposed method is evaluated on both public datasets and real-world applications and shows competitive localization accuracy and robustness in dynamic environments. Yet, to the best of our knowledge, it is the best-performance real-time RGB-D inertial odometry for resource-restricted platforms in dynamic environments for now. The proposed system is open source at: https://github.com/HITSZ-NRSL/Dynamic-VINS.git</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2022.3191193</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Dynamic scheduling ; Feature detection ; Feature extraction ; Feature recognition ; Localization ; Machine learning ; Object detection ; Object recognition ; Optimization ; Real time ; Robots ; Semantic segmentation ; Semantics ; Simultaneous localization and mapping ; Tracking ; Vehicle dynamics ; visual-inertial SLAM</subject><ispartof>IEEE robotics and automation letters, 2022-10, Vol.7 (4), p.9573-9580</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-55e7654ba4e813d6633aaf4779b8d9a7aa2aecebd3e2511f0f9704dee25875b83</citedby><cites>FETCH-LOGICAL-c291t-55e7654ba4e813d6633aaf4779b8d9a7aa2aecebd3e2511f0f9704dee25875b83</cites><orcidid>0000-0002-3124-5559 ; 0000-0003-1652-9681 ; 0000-0002-1994-6408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9830851$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9830851$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jianheng</creatorcontrib><creatorcontrib>Li, Xuanfu</creatorcontrib><creatorcontrib>Liu, Yueqian</creatorcontrib><creatorcontrib>Chen, Haoyao</creatorcontrib><title>RGB-D Inertial Odometry for a Resource-Restricted Robot in Dynamic Environments</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Current simultaneous localization and mapping (SLAM) algorithms perform well in static environments but easily fail in dynamic environments. Recent works introduce deep learning-based semantic information to SLAM systems to reduce the influence of dynamic objects. However, it is still challenging to apply a robust localization in dynamic environments for resource-restricted robots. This paper proposes a real-time RGB-D inertial odometry system for resource-restricted robots in dynamic environments named Dynamic-VINS. Three main threads run in parallel: object detection, feature tracking, and state optimization. The proposed Dynamic-VINS combines object detection and depth information for dynamic feature recognition and achieves performance comparable to semantic segmentation. Dynamic-VINS adopts grid-based feature detection and proposes a fast and efficient method to extract high-quality FAST feature points. IMU is applied to predict motion for feature tracking and moving consistency check. The proposed method is evaluated on both public datasets and real-world applications and shows competitive localization accuracy and robustness in dynamic environments. Yet, to the best of our knowledge, it is the best-performance real-time RGB-D inertial odometry for resource-restricted platforms in dynamic environments for now. The proposed system is open source at: https://github.com/HITSZ-NRSL/Dynamic-VINS.git</description><subject>Algorithms</subject><subject>Dynamic scheduling</subject><subject>Feature detection</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Real time</subject><subject>Robots</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Simultaneous localization and mapping</subject><subject>Tracking</subject><subject>Vehicle dynamics</subject><subject>visual-inertial SLAM</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtrwzAQhEVpoSHNvdCLoGeneliWdUzzaiAQMO1ZyPYaFGIplZVC_n0VEkpPOwszu8OH0DMlU0qJettWsykjjE05VZQqfodGjEuZcVkU9__0I5oMw54QQgWTXIkR2lXr92yBNw5CtOaAd63vIYYz7nzABlcw-FNoIEsiBttEaHHlax-xdXhxdqa3DV66Hxu868HF4Qk9dOYwwOQ2x-hrtfycf2Tb3Xozn22zhikaMyFAFiKvTQ4l5W1RcG5Ml0up6rJVRhrDDDRQtxyYoLQjnZIkbyFtpRR1ycfo9Xr3GPz3KZXT-1TUpZeaFUrQnDORJxe5uprghyFAp4_B9iacNSX6Qk4ncvpCTt_IpcjLNWIB4M-uSk5KQfkvH51o1A</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Liu, Jianheng</creator><creator>Li, Xuanfu</creator><creator>Liu, Yueqian</creator><creator>Chen, Haoyao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3124-5559</orcidid><orcidid>https://orcid.org/0000-0003-1652-9681</orcidid><orcidid>https://orcid.org/0000-0002-1994-6408</orcidid></search><sort><creationdate>20221001</creationdate><title>RGB-D Inertial Odometry for a Resource-Restricted Robot in Dynamic Environments</title><author>Liu, Jianheng ; Li, Xuanfu ; Liu, Yueqian ; Chen, Haoyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-55e7654ba4e813d6633aaf4779b8d9a7aa2aecebd3e2511f0f9704dee25875b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Dynamic scheduling</topic><topic>Feature detection</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Real time</topic><topic>Robots</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Simultaneous localization and mapping</topic><topic>Tracking</topic><topic>Vehicle dynamics</topic><topic>visual-inertial SLAM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jianheng</creatorcontrib><creatorcontrib>Li, Xuanfu</creatorcontrib><creatorcontrib>Liu, Yueqian</creatorcontrib><creatorcontrib>Chen, Haoyao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jianheng</au><au>Li, Xuanfu</au><au>Liu, Yueqian</au><au>Chen, Haoyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RGB-D Inertial Odometry for a Resource-Restricted Robot in Dynamic Environments</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>7</volume><issue>4</issue><spage>9573</spage><epage>9580</epage><pages>9573-9580</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Current simultaneous localization and mapping (SLAM) algorithms perform well in static environments but easily fail in dynamic environments. Recent works introduce deep learning-based semantic information to SLAM systems to reduce the influence of dynamic objects. However, it is still challenging to apply a robust localization in dynamic environments for resource-restricted robots. This paper proposes a real-time RGB-D inertial odometry system for resource-restricted robots in dynamic environments named Dynamic-VINS. Three main threads run in parallel: object detection, feature tracking, and state optimization. The proposed Dynamic-VINS combines object detection and depth information for dynamic feature recognition and achieves performance comparable to semantic segmentation. Dynamic-VINS adopts grid-based feature detection and proposes a fast and efficient method to extract high-quality FAST feature points. IMU is applied to predict motion for feature tracking and moving consistency check. The proposed method is evaluated on both public datasets and real-world applications and shows competitive localization accuracy and robustness in dynamic environments. Yet, to the best of our knowledge, it is the best-performance real-time RGB-D inertial odometry for resource-restricted platforms in dynamic environments for now. The proposed system is open source at: https://github.com/HITSZ-NRSL/Dynamic-VINS.git</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2022.3191193</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3124-5559</orcidid><orcidid>https://orcid.org/0000-0003-1652-9681</orcidid><orcidid>https://orcid.org/0000-0002-1994-6408</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2022-10, Vol.7 (4), p.9573-9580 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LRA_2022_3191193 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Dynamic scheduling Feature detection Feature extraction Feature recognition Localization Machine learning Object detection Object recognition Optimization Real time Robots Semantic segmentation Semantics Simultaneous localization and mapping Tracking Vehicle dynamics visual-inertial SLAM |
title | RGB-D Inertial Odometry for a Resource-Restricted Robot in Dynamic Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RGB-D%20Inertial%20Odometry%20for%20a%20Resource-Restricted%20Robot%20in%20Dynamic%20Environments&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Liu,%20Jianheng&rft.date=2022-10-01&rft.volume=7&rft.issue=4&rft.spage=9573&rft.epage=9580&rft.pages=9573-9580&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2022.3191193&rft_dat=%3Cproquest_RIE%3E2695143254%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695143254&rft_id=info:pmid/&rft_ieee_id=9830851&rfr_iscdi=true |