Forward Statics of Tensegrity Robots With Rigid Bodies Using Homotopy Continuation
Tensegrity robots are composed of simple members (rigid bodies and tensile cables) and have features like lightweight, compliance, and robustness, thus representing a promising alternative to soft and rigid robots. Forward statics, which determines the robot pose in static equilibrium, is very helpf...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2022-04, Vol.7 (2), p.5183-5190 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5190 |
---|---|
container_issue | 2 |
container_start_page | 5183 |
container_title | IEEE robotics and automation letters |
container_volume | 7 |
creator | Luo, Jiahui Wu, Zhigang Xu, Xiaoming Chen, Yanghui Liu, Zizhe Ming, Li |
description | Tensegrity robots are composed of simple members (rigid bodies and tensile cables) and have features like lightweight, compliance, and robustness, thus representing a promising alternative to soft and rigid robots. Forward statics, which determines the robot pose in static equilibrium, is very helpful for the design of tensegrity robots. However, existing approaches are not efficient or not general enough for Class-k tensegrity robots, where up to k rigid bodies can be connected. This letter proposes a general approach for static modeling of tensegrity robots with rigid bodies of arbitrary shapes, using natural coordinates. Introducing an additional set of variables transforms the static equation into a polynomial system with four kinds of parameters: cable rest lengths, deformations, stiffness coefficients, and external forces. Then, the forward statics problem appears as a path-following problem of a parameter homotopy, which is efficiently solved by the homotopy continuation method. Simulations illustrate how the forward statics can be used to evaluate the achievable range and the strength of a 2D tensegrity manipulator and a 3D tensegrity spine. Finally, we conduct hardware experiments on a tensegrity manipulator prototype, validating the accuracy of the proposed approach. |
doi_str_mv | 10.1109/LRA.2022.3155195 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2022_3155195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9723654</ieee_id><sourcerecordid>2638129794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-54e09f05d4da3ca8a4e4c30668fca11626e7e01f9d7acb8efd0411f1dfff08c63</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGr3gpuA66l5TJLJsha1QkEYW1yGNI-aYic1SZH-e6e0iKt7Ft85Fz4AbjEaY4zkw7ydjAkiZEwxY1iyCzAgVIiKCs4v_-VrMMp5gxDCjAgq2QC0zzH96GThe9ElmAyjhwvXZbdOoRxgG1exZPgRyidswzpY-BhtcBkuc-jWcBa3scTdAU5jV0K37ydidwOuvP7KbnS-Q7B8flpMZ9X87eV1OplXhkhcKlY7JD1itraaGt3o2tWGIs4bbzTGnHAnHMJeWqHNqnHeohpjj633HjWG0yG4P-3uUvzeu1zUJu5T179UhNMGEylk3VPoRJkUc07Oq10KW50OCiN1lKd6eeooT53l9ZW7UyU45_5wKQjlrKa_vAVrOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638129794</pqid></control><display><type>article</type><title>Forward Statics of Tensegrity Robots With Rigid Bodies Using Homotopy Continuation</title><source>IEEE Electronic Library (IEL)</source><creator>Luo, Jiahui ; Wu, Zhigang ; Xu, Xiaoming ; Chen, Yanghui ; Liu, Zizhe ; Ming, Li</creator><creatorcontrib>Luo, Jiahui ; Wu, Zhigang ; Xu, Xiaoming ; Chen, Yanghui ; Liu, Zizhe ; Ming, Li</creatorcontrib><description><![CDATA[Tensegrity robots are composed of simple members (rigid bodies and tensile cables) and have features like lightweight, compliance, and robustness, thus representing a promising alternative to soft and rigid robots. Forward statics, which determines the robot pose in static equilibrium, is very helpful for the design of tensegrity robots. However, existing approaches are not efficient or not general enough for Class-<inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> tensegrity robots, where up to <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> rigid bodies can be connected. This letter proposes a general approach for static modeling of tensegrity robots with rigid bodies of arbitrary shapes, using natural coordinates. Introducing an additional set of variables transforms the static equation into a polynomial system with four kinds of parameters: cable rest lengths, deformations, stiffness coefficients, and external forces. Then, the forward statics problem appears as a path-following problem of a parameter homotopy, which is efficiently solved by the homotopy continuation method. Simulations illustrate how the forward statics can be used to evaluate the achievable range and the strength of a 2D tensegrity manipulator and a 3D tensegrity spine. Finally, we conduct hardware experiments on a tensegrity manipulator prototype, validating the accuracy of the proposed approach.]]></description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2022.3155195</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cables ; Continuation methods ; flexible robotics ; forward statics ; homotopy continuation ; Manipulator dynamics ; Manipulators ; Mathematical models ; Parameters ; Polynomials ; Rigid structures ; Robot kinematics ; Robots ; Shape ; Static equilibrium ; Stiffness coefficients ; Strain ; Tendon/wire mechanism ; Tensegrity ; tensegrity robots ; Three-dimensional displays</subject><ispartof>IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.5183-5190</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-54e09f05d4da3ca8a4e4c30668fca11626e7e01f9d7acb8efd0411f1dfff08c63</citedby><cites>FETCH-LOGICAL-c291t-54e09f05d4da3ca8a4e4c30668fca11626e7e01f9d7acb8efd0411f1dfff08c63</cites><orcidid>0000-0002-8759-1565 ; 0000-0001-6153-8742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9723654$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9723654$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Luo, Jiahui</creatorcontrib><creatorcontrib>Wu, Zhigang</creatorcontrib><creatorcontrib>Xu, Xiaoming</creatorcontrib><creatorcontrib>Chen, Yanghui</creatorcontrib><creatorcontrib>Liu, Zizhe</creatorcontrib><creatorcontrib>Ming, Li</creatorcontrib><title>Forward Statics of Tensegrity Robots With Rigid Bodies Using Homotopy Continuation</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description><![CDATA[Tensegrity robots are composed of simple members (rigid bodies and tensile cables) and have features like lightweight, compliance, and robustness, thus representing a promising alternative to soft and rigid robots. Forward statics, which determines the robot pose in static equilibrium, is very helpful for the design of tensegrity robots. However, existing approaches are not efficient or not general enough for Class-<inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> tensegrity robots, where up to <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> rigid bodies can be connected. This letter proposes a general approach for static modeling of tensegrity robots with rigid bodies of arbitrary shapes, using natural coordinates. Introducing an additional set of variables transforms the static equation into a polynomial system with four kinds of parameters: cable rest lengths, deformations, stiffness coefficients, and external forces. Then, the forward statics problem appears as a path-following problem of a parameter homotopy, which is efficiently solved by the homotopy continuation method. Simulations illustrate how the forward statics can be used to evaluate the achievable range and the strength of a 2D tensegrity manipulator and a 3D tensegrity spine. Finally, we conduct hardware experiments on a tensegrity manipulator prototype, validating the accuracy of the proposed approach.]]></description><subject>Cables</subject><subject>Continuation methods</subject><subject>flexible robotics</subject><subject>forward statics</subject><subject>homotopy continuation</subject><subject>Manipulator dynamics</subject><subject>Manipulators</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Rigid structures</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Shape</subject><subject>Static equilibrium</subject><subject>Stiffness coefficients</subject><subject>Strain</subject><subject>Tendon/wire mechanism</subject><subject>Tensegrity</subject><subject>tensegrity robots</subject><subject>Three-dimensional displays</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWGr3gpuA66l5TJLJsha1QkEYW1yGNI-aYic1SZH-e6e0iKt7Ft85Fz4AbjEaY4zkw7ydjAkiZEwxY1iyCzAgVIiKCs4v_-VrMMp5gxDCjAgq2QC0zzH96GThe9ElmAyjhwvXZbdOoRxgG1exZPgRyidswzpY-BhtcBkuc-jWcBa3scTdAU5jV0K37ydidwOuvP7KbnS-Q7B8flpMZ9X87eV1OplXhkhcKlY7JD1itraaGt3o2tWGIs4bbzTGnHAnHMJeWqHNqnHeohpjj633HjWG0yG4P-3uUvzeu1zUJu5T179UhNMGEylk3VPoRJkUc07Oq10KW50OCiN1lKd6eeooT53l9ZW7UyU45_5wKQjlrKa_vAVrOQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Luo, Jiahui</creator><creator>Wu, Zhigang</creator><creator>Xu, Xiaoming</creator><creator>Chen, Yanghui</creator><creator>Liu, Zizhe</creator><creator>Ming, Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8759-1565</orcidid><orcidid>https://orcid.org/0000-0001-6153-8742</orcidid></search><sort><creationdate>20220401</creationdate><title>Forward Statics of Tensegrity Robots With Rigid Bodies Using Homotopy Continuation</title><author>Luo, Jiahui ; Wu, Zhigang ; Xu, Xiaoming ; Chen, Yanghui ; Liu, Zizhe ; Ming, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-54e09f05d4da3ca8a4e4c30668fca11626e7e01f9d7acb8efd0411f1dfff08c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cables</topic><topic>Continuation methods</topic><topic>flexible robotics</topic><topic>forward statics</topic><topic>homotopy continuation</topic><topic>Manipulator dynamics</topic><topic>Manipulators</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Rigid structures</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Shape</topic><topic>Static equilibrium</topic><topic>Stiffness coefficients</topic><topic>Strain</topic><topic>Tendon/wire mechanism</topic><topic>Tensegrity</topic><topic>tensegrity robots</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jiahui</creatorcontrib><creatorcontrib>Wu, Zhigang</creatorcontrib><creatorcontrib>Xu, Xiaoming</creatorcontrib><creatorcontrib>Chen, Yanghui</creatorcontrib><creatorcontrib>Liu, Zizhe</creatorcontrib><creatorcontrib>Ming, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luo, Jiahui</au><au>Wu, Zhigang</au><au>Xu, Xiaoming</au><au>Chen, Yanghui</au><au>Liu, Zizhe</au><au>Ming, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forward Statics of Tensegrity Robots With Rigid Bodies Using Homotopy Continuation</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>5183</spage><epage>5190</epage><pages>5183-5190</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract><![CDATA[Tensegrity robots are composed of simple members (rigid bodies and tensile cables) and have features like lightweight, compliance, and robustness, thus representing a promising alternative to soft and rigid robots. Forward statics, which determines the robot pose in static equilibrium, is very helpful for the design of tensegrity robots. However, existing approaches are not efficient or not general enough for Class-<inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> tensegrity robots, where up to <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> rigid bodies can be connected. This letter proposes a general approach for static modeling of tensegrity robots with rigid bodies of arbitrary shapes, using natural coordinates. Introducing an additional set of variables transforms the static equation into a polynomial system with four kinds of parameters: cable rest lengths, deformations, stiffness coefficients, and external forces. Then, the forward statics problem appears as a path-following problem of a parameter homotopy, which is efficiently solved by the homotopy continuation method. Simulations illustrate how the forward statics can be used to evaluate the achievable range and the strength of a 2D tensegrity manipulator and a 3D tensegrity spine. Finally, we conduct hardware experiments on a tensegrity manipulator prototype, validating the accuracy of the proposed approach.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2022.3155195</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8759-1565</orcidid><orcidid>https://orcid.org/0000-0001-6153-8742</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.5183-5190 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LRA_2022_3155195 |
source | IEEE Electronic Library (IEL) |
subjects | Cables Continuation methods flexible robotics forward statics homotopy continuation Manipulator dynamics Manipulators Mathematical models Parameters Polynomials Rigid structures Robot kinematics Robots Shape Static equilibrium Stiffness coefficients Strain Tendon/wire mechanism Tensegrity tensegrity robots Three-dimensional displays |
title | Forward Statics of Tensegrity Robots With Rigid Bodies Using Homotopy Continuation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forward%20Statics%20of%20Tensegrity%20Robots%20With%20Rigid%20Bodies%20Using%20Homotopy%20Continuation&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Luo,%20Jiahui&rft.date=2022-04-01&rft.volume=7&rft.issue=2&rft.spage=5183&rft.epage=5190&rft.pages=5183-5190&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2022.3155195&rft_dat=%3Cproquest_RIE%3E2638129794%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638129794&rft_id=info:pmid/&rft_ieee_id=9723654&rfr_iscdi=true |