Forward Statics of Tensegrity Robots With Rigid Bodies Using Homotopy Continuation

Tensegrity robots are composed of simple members (rigid bodies and tensile cables) and have features like lightweight, compliance, and robustness, thus representing a promising alternative to soft and rigid robots. Forward statics, which determines the robot pose in static equilibrium, is very helpf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2022-04, Vol.7 (2), p.5183-5190
Hauptverfasser: Luo, Jiahui, Wu, Zhigang, Xu, Xiaoming, Chen, Yanghui, Liu, Zizhe, Ming, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5190
container_issue 2
container_start_page 5183
container_title IEEE robotics and automation letters
container_volume 7
creator Luo, Jiahui
Wu, Zhigang
Xu, Xiaoming
Chen, Yanghui
Liu, Zizhe
Ming, Li
description Tensegrity robots are composed of simple members (rigid bodies and tensile cables) and have features like lightweight, compliance, and robustness, thus representing a promising alternative to soft and rigid robots. Forward statics, which determines the robot pose in static equilibrium, is very helpful for the design of tensegrity robots. However, existing approaches are not efficient or not general enough for Class-k tensegrity robots, where up to k rigid bodies can be connected. This letter proposes a general approach for static modeling of tensegrity robots with rigid bodies of arbitrary shapes, using natural coordinates. Introducing an additional set of variables transforms the static equation into a polynomial system with four kinds of parameters: cable rest lengths, deformations, stiffness coefficients, and external forces. Then, the forward statics problem appears as a path-following problem of a parameter homotopy, which is efficiently solved by the homotopy continuation method. Simulations illustrate how the forward statics can be used to evaluate the achievable range and the strength of a 2D tensegrity manipulator and a 3D tensegrity spine. Finally, we conduct hardware experiments on a tensegrity manipulator prototype, validating the accuracy of the proposed approach.
doi_str_mv 10.1109/LRA.2022.3155195
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2022_3155195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9723654</ieee_id><sourcerecordid>2638129794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-54e09f05d4da3ca8a4e4c30668fca11626e7e01f9d7acb8efd0411f1dfff08c63</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGr3gpuA66l5TJLJsha1QkEYW1yGNI-aYic1SZH-e6e0iKt7Ft85Fz4AbjEaY4zkw7ydjAkiZEwxY1iyCzAgVIiKCs4v_-VrMMp5gxDCjAgq2QC0zzH96GThe9ElmAyjhwvXZbdOoRxgG1exZPgRyidswzpY-BhtcBkuc-jWcBa3scTdAU5jV0K37ydidwOuvP7KbnS-Q7B8flpMZ9X87eV1OplXhkhcKlY7JD1itraaGt3o2tWGIs4bbzTGnHAnHMJeWqHNqnHeohpjj633HjWG0yG4P-3uUvzeu1zUJu5T179UhNMGEylk3VPoRJkUc07Oq10KW50OCiN1lKd6eeooT53l9ZW7UyU45_5wKQjlrKa_vAVrOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638129794</pqid></control><display><type>article</type><title>Forward Statics of Tensegrity Robots With Rigid Bodies Using Homotopy Continuation</title><source>IEEE Electronic Library (IEL)</source><creator>Luo, Jiahui ; Wu, Zhigang ; Xu, Xiaoming ; Chen, Yanghui ; Liu, Zizhe ; Ming, Li</creator><creatorcontrib>Luo, Jiahui ; Wu, Zhigang ; Xu, Xiaoming ; Chen, Yanghui ; Liu, Zizhe ; Ming, Li</creatorcontrib><description><![CDATA[Tensegrity robots are composed of simple members (rigid bodies and tensile cables) and have features like lightweight, compliance, and robustness, thus representing a promising alternative to soft and rigid robots. Forward statics, which determines the robot pose in static equilibrium, is very helpful for the design of tensegrity robots. However, existing approaches are not efficient or not general enough for Class-<inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> tensegrity robots, where up to <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> rigid bodies can be connected. This letter proposes a general approach for static modeling of tensegrity robots with rigid bodies of arbitrary shapes, using natural coordinates. Introducing an additional set of variables transforms the static equation into a polynomial system with four kinds of parameters: cable rest lengths, deformations, stiffness coefficients, and external forces. Then, the forward statics problem appears as a path-following problem of a parameter homotopy, which is efficiently solved by the homotopy continuation method. Simulations illustrate how the forward statics can be used to evaluate the achievable range and the strength of a 2D tensegrity manipulator and a 3D tensegrity spine. Finally, we conduct hardware experiments on a tensegrity manipulator prototype, validating the accuracy of the proposed approach.]]></description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2022.3155195</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cables ; Continuation methods ; flexible robotics ; forward statics ; homotopy continuation ; Manipulator dynamics ; Manipulators ; Mathematical models ; Parameters ; Polynomials ; Rigid structures ; Robot kinematics ; Robots ; Shape ; Static equilibrium ; Stiffness coefficients ; Strain ; Tendon/wire mechanism ; Tensegrity ; tensegrity robots ; Three-dimensional displays</subject><ispartof>IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.5183-5190</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-54e09f05d4da3ca8a4e4c30668fca11626e7e01f9d7acb8efd0411f1dfff08c63</citedby><cites>FETCH-LOGICAL-c291t-54e09f05d4da3ca8a4e4c30668fca11626e7e01f9d7acb8efd0411f1dfff08c63</cites><orcidid>0000-0002-8759-1565 ; 0000-0001-6153-8742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9723654$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9723654$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Luo, Jiahui</creatorcontrib><creatorcontrib>Wu, Zhigang</creatorcontrib><creatorcontrib>Xu, Xiaoming</creatorcontrib><creatorcontrib>Chen, Yanghui</creatorcontrib><creatorcontrib>Liu, Zizhe</creatorcontrib><creatorcontrib>Ming, Li</creatorcontrib><title>Forward Statics of Tensegrity Robots With Rigid Bodies Using Homotopy Continuation</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description><![CDATA[Tensegrity robots are composed of simple members (rigid bodies and tensile cables) and have features like lightweight, compliance, and robustness, thus representing a promising alternative to soft and rigid robots. Forward statics, which determines the robot pose in static equilibrium, is very helpful for the design of tensegrity robots. However, existing approaches are not efficient or not general enough for Class-<inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> tensegrity robots, where up to <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> rigid bodies can be connected. This letter proposes a general approach for static modeling of tensegrity robots with rigid bodies of arbitrary shapes, using natural coordinates. Introducing an additional set of variables transforms the static equation into a polynomial system with four kinds of parameters: cable rest lengths, deformations, stiffness coefficients, and external forces. Then, the forward statics problem appears as a path-following problem of a parameter homotopy, which is efficiently solved by the homotopy continuation method. Simulations illustrate how the forward statics can be used to evaluate the achievable range and the strength of a 2D tensegrity manipulator and a 3D tensegrity spine. Finally, we conduct hardware experiments on a tensegrity manipulator prototype, validating the accuracy of the proposed approach.]]></description><subject>Cables</subject><subject>Continuation methods</subject><subject>flexible robotics</subject><subject>forward statics</subject><subject>homotopy continuation</subject><subject>Manipulator dynamics</subject><subject>Manipulators</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Rigid structures</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Shape</subject><subject>Static equilibrium</subject><subject>Stiffness coefficients</subject><subject>Strain</subject><subject>Tendon/wire mechanism</subject><subject>Tensegrity</subject><subject>tensegrity robots</subject><subject>Three-dimensional displays</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWGr3gpuA66l5TJLJsha1QkEYW1yGNI-aYic1SZH-e6e0iKt7Ft85Fz4AbjEaY4zkw7ydjAkiZEwxY1iyCzAgVIiKCs4v_-VrMMp5gxDCjAgq2QC0zzH96GThe9ElmAyjhwvXZbdOoRxgG1exZPgRyidswzpY-BhtcBkuc-jWcBa3scTdAU5jV0K37ydidwOuvP7KbnS-Q7B8flpMZ9X87eV1OplXhkhcKlY7JD1itraaGt3o2tWGIs4bbzTGnHAnHMJeWqHNqnHeohpjj633HjWG0yG4P-3uUvzeu1zUJu5T179UhNMGEylk3VPoRJkUc07Oq10KW50OCiN1lKd6eeooT53l9ZW7UyU45_5wKQjlrKa_vAVrOQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Luo, Jiahui</creator><creator>Wu, Zhigang</creator><creator>Xu, Xiaoming</creator><creator>Chen, Yanghui</creator><creator>Liu, Zizhe</creator><creator>Ming, Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8759-1565</orcidid><orcidid>https://orcid.org/0000-0001-6153-8742</orcidid></search><sort><creationdate>20220401</creationdate><title>Forward Statics of Tensegrity Robots With Rigid Bodies Using Homotopy Continuation</title><author>Luo, Jiahui ; Wu, Zhigang ; Xu, Xiaoming ; Chen, Yanghui ; Liu, Zizhe ; Ming, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-54e09f05d4da3ca8a4e4c30668fca11626e7e01f9d7acb8efd0411f1dfff08c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cables</topic><topic>Continuation methods</topic><topic>flexible robotics</topic><topic>forward statics</topic><topic>homotopy continuation</topic><topic>Manipulator dynamics</topic><topic>Manipulators</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Rigid structures</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Shape</topic><topic>Static equilibrium</topic><topic>Stiffness coefficients</topic><topic>Strain</topic><topic>Tendon/wire mechanism</topic><topic>Tensegrity</topic><topic>tensegrity robots</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jiahui</creatorcontrib><creatorcontrib>Wu, Zhigang</creatorcontrib><creatorcontrib>Xu, Xiaoming</creatorcontrib><creatorcontrib>Chen, Yanghui</creatorcontrib><creatorcontrib>Liu, Zizhe</creatorcontrib><creatorcontrib>Ming, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luo, Jiahui</au><au>Wu, Zhigang</au><au>Xu, Xiaoming</au><au>Chen, Yanghui</au><au>Liu, Zizhe</au><au>Ming, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forward Statics of Tensegrity Robots With Rigid Bodies Using Homotopy Continuation</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>5183</spage><epage>5190</epage><pages>5183-5190</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract><![CDATA[Tensegrity robots are composed of simple members (rigid bodies and tensile cables) and have features like lightweight, compliance, and robustness, thus representing a promising alternative to soft and rigid robots. Forward statics, which determines the robot pose in static equilibrium, is very helpful for the design of tensegrity robots. However, existing approaches are not efficient or not general enough for Class-<inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> tensegrity robots, where up to <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> rigid bodies can be connected. This letter proposes a general approach for static modeling of tensegrity robots with rigid bodies of arbitrary shapes, using natural coordinates. Introducing an additional set of variables transforms the static equation into a polynomial system with four kinds of parameters: cable rest lengths, deformations, stiffness coefficients, and external forces. Then, the forward statics problem appears as a path-following problem of a parameter homotopy, which is efficiently solved by the homotopy continuation method. Simulations illustrate how the forward statics can be used to evaluate the achievable range and the strength of a 2D tensegrity manipulator and a 3D tensegrity spine. Finally, we conduct hardware experiments on a tensegrity manipulator prototype, validating the accuracy of the proposed approach.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2022.3155195</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8759-1565</orcidid><orcidid>https://orcid.org/0000-0001-6153-8742</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2022-04, Vol.7 (2), p.5183-5190
issn 2377-3766
2377-3766
language eng
recordid cdi_crossref_primary_10_1109_LRA_2022_3155195
source IEEE Electronic Library (IEL)
subjects Cables
Continuation methods
flexible robotics
forward statics
homotopy continuation
Manipulator dynamics
Manipulators
Mathematical models
Parameters
Polynomials
Rigid structures
Robot kinematics
Robots
Shape
Static equilibrium
Stiffness coefficients
Strain
Tendon/wire mechanism
Tensegrity
tensegrity robots
Three-dimensional displays
title Forward Statics of Tensegrity Robots With Rigid Bodies Using Homotopy Continuation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forward%20Statics%20of%20Tensegrity%20Robots%20With%20Rigid%20Bodies%20Using%20Homotopy%20Continuation&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Luo,%20Jiahui&rft.date=2022-04-01&rft.volume=7&rft.issue=2&rft.spage=5183&rft.epage=5190&rft.pages=5183-5190&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2022.3155195&rft_dat=%3Cproquest_RIE%3E2638129794%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638129794&rft_id=info:pmid/&rft_ieee_id=9723654&rfr_iscdi=true